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Abstract

Diagnosing Alzheimer’s Disease (AD) accurately from brain MRI scans is still a key
challenge in medical AI; moreover, the lack of interpretability of Deep Learning models
stops these systems from being used in real-world scenarios. In this work, we replicate
the work of [LBF+24], which introduces a pipeline that combines 2D Convolutional
Neural Networks (CNNs) with Explainable Artificial Intelligence (XAI) techniques
to analyze 3D brain magnetic resonance images for the diagnosis of AD Using the
publicly available ”ADNI1: Complete 1Yr 1.5T dataset”. After replicating the results
of the authors, we applied methodological adjustments and hyperparameter tuning to
improve the results of the original paper, achieving State-Of-The-Art metrics.

1 Dataset

The ADNI1: Complete 1Yr 1.5T dataset [RBD+21] comprises data from participants who under-
went magnetic resonance imaging (MRI) scans at baseline (screening), 6 months , and 12 months
using 1.5 Tesla MRI scanners. This standardized dataset was developed to promote consistency in
data analysis and facilitate direct comparisons of various analysis methods

The dataset includes participants across three diagnostic categories:

• Cognitively Normal (CN): 204 individuals 76.31± 5.22 years old

• Mild Cognitive Impairment (MCI): 331 individuals 75.11±6.92 years old, further divided
into pMCI ( progressive MCI ) and sMCI ( stable MCI )

• Alzheimer’s Disease (AD): 191 individuals 75.23± 7.02 years old

Each participant’s scan consists of 3D images which are divided into 3 planes discretized into
slices: Sagittal Plane containing on average 160–170 slices, Axial Plane on average 130–150
slices and Coronal Plane with 180-200.

Figure 1: Example of Standard anatomical plane’s slices before Pre-Processing

As we can see from Figure 1, raw MRI slices often contains many irrelevant structures, such as
the skull and surrounding tissues, which are not directly related to the brain. To ensure accurate
analysis, it is essential to exclude these non-brain regions. This is why a pre-processing stage is
necessary to isolate and focus only on the brain.

1



2 Pipeline

Figure 2: Pipeline highlighting the pre-processing steps

2.1 Pre-Processing

Figure 3: Example of a pre processing pipeline on a single slice

The pre-processing pipeline utilized in this study consists of three main stages designed to prepare
the MRI images for further analysis:

• Bias Field Correction: To correct for common non-uniformities in MRI scans, we applied
the N4ITK algorithm, a widely used method that helps improve image quality by reducing
low-frequency intensity artifacts caused by magnetic field inhomogeneities.

• Spatial Normalization: The MRI scan of each subject was spatially aligned to a standard
anatomical space, specifically the Montreal Neurological Institute (MNI) 152 template. This
was achieved using the SyN (Symmetric Normalization) algorithm. The alignment was per-
formed with respect to the ICBM 2009c nonlinear symmetric version of the MNI template,
ensuring consistency across all images.

• Skull Stripping: Non-brain tissues such as the skull, scalp, and dura can interfere with
analysis pipelines and distort measurements of brain structure. To eliminate these, we em-
ployed the Brain Extraction Tool (BET) implemented within the FSL software suite. This
step is crucial for accurate brain morphometry and analysis.

The first two steps—bias field correction and affine registration—were carried out using the
t1-linear pipeline provided by the Clinica platform.
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2.2 Feature Extraction

Figure 4: Convolutional Backbone with shared weights, this is applied to all the planes separately

After the pre-processing steps and the dimensionality reduction, what we are left with for each plane
(Sagittal, Coronal, Axial ) is a 3D volumetric brain scan represented as a tensor X ∈ RH×W×N ,
where H, W , and N denote the height, width, and depth (number of slices) of the pre-processed
scans, respectively. We extract N axial 2D slices from this volume:

X = {x1, x2, . . . , xN}, xi ∈ RH×W

Each slice xi is a single-channel (grayscale) image which contrasts with standard 2D convolu-
tional backbones such as VGG 16, pre-trained on the ImageNet dataset since they expect 3-channel
RGB inputs. To adapt these models for grayscale images without redundantly replicating the input
across channels, we modify the first convolutional layer. Under the assumption that the filters
operate linearly and combine contributions additively across channels what we can do is to apply
3 filters to the same image just by adding them before and apply them only to our single-channel
image (Figure 4).

Each slice xi is first resized to 224×224 pixels to match the expected input size of the backbone
and normalized accordingly. It is then passed through the convolutional network Fθ, composed of
convolutional layers and a global max-pooling operation, to extract a feature vector:

fi = AvgPool(Fθ(xi)) =
1

H ′W ′

H′∑
h=1

W ′∑
w=1

Fθ(xi)[h,w]

Here, d denotes the dimensionality of the output feature vector. Importantly, the same back-
bone Fθ is used across all slices, meaning the weights θ are shared across the sequence—similar
to weight-sharing in Recurrent Neural Networks (RNNs).Since the parameters θ are shared across
all slices, the network updates them during backpropagation based on a global loss that accounts
for all slices. This means that even though slices are independently encoded, their embeddings fi
contribute collectively to learning θ. Specifically, if L is the final loss function computed from a
classifier output based on the aggregated feature vector, then the gradient w.r.t. θ is given by:

∂L
∂θ

=

N∑
i=1

∂L
∂fi

· ∂fi
∂θ

=

N∑
i=1

∂L
∂Fθ(xi)

· ∂Fθ(xi)

∂θ

This enforces that the shared encoder learns 2D representations optimized in the context of the
entire 3D image. It is important to notice that when we talk about a 3D image we are referring to
the 3D image of a specific plane, this is fundamental because we are still not taking into account
the inter-plane dependencies but only the inter-slice dependencies which are computed intra-plane.
As a result, we obtain a sequence of feature vectors:
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F = {f1, f2, . . . , fN}, fi ∈ Rd

This feature sequence compactly represents the original 3D volume and serves as a suitable
input for the next module that capture inter-slice dependencies.

2.3 Attention XAI Fusion Module

Figure 5: Attention XAI Fusion Module scheme applied to each plane slices

After extracting individual 2D slice features using a shared convolutional backbone, this module
enables the network to learn inter-slice dependencies and capture global 3D patterns. To quantify
slice importance, an attention mechanism is applied. Each feature vector fi is passed through a
lightweight fully connected (FC) layer to produce an attention score wi ∈ R:

wi = FCatt(fi)

This attention mechanism introduces only d + 1 parameters and remains computationally ef-
ficient. The attention scores {wi} are then normalized using a softmax function to obtain a
probability distribution over slices:

αi =
exp(wi)∑N
j=1 exp(wj)

,

N∑
i=1

αi = 1

Each normalized weight αi quantifies the importance of slice xi relative to the full volume.
Finally, we compute a fused global feature representation by a weighted sum over the slice embed-
dings:

F =
N∑
i=1

αifi

This resulting vector F ∈ Rd encodes both spatial content and the attention-weighted contribu-
tions of all slices. It is then passed to the final classifier to predict the class label ŷ, completing the
learning process. Importantly, the set of attention weights {αi} offers interpretability, identifying
which slices influenced the final prediction the most.

4



In summary, the output for each plane slice of this module is composed of :
A Synthesized Feature Vector F and an Attention Vector (Figure 5) , these will be used respectively
in the Diagnosis and the Heat Attention Map Generation.

2.4 Diagnosis

Figure 6: Diagnosis Module scheme applied to each plane

In the final Diagnosis Module, the synthesized feature vector F ∈ Rd, which aggregates information
from the entire 3D brain scan via the attention mechanism, is passed through a classification head
for diagnosis prediction.

The head consists of a fully connected layer followed by a softmax activation to perform binary
classification (e.g., Alzheimer’s Disease (AD) vs. Cognitively Normal (CN)). Let FChead be a Fully
Connected layer. The output z ∈ R2 is given by:

z = FChead(F )

These is then normalized using the softmax function to obtain the final class probabilities
D = [D1, D2] ∈ [0, 1]2, where D1 +D2 = 1:

Dk =
exp(zk)∑2
j=1 exp(zj)

, k = 1, 2

Here, D1 and D2 represent the probabilities assigned to the two diagnosis classes. The model
predicts the label corresponding to the higher probability. Thus, this module produces a diagnosis
based on the attention-weighted, aggregated feature representation of the entire scan.

5



2.5 Heat Map Generation

In order to make the model interpretable we need to generate an Attention Map which puts together
the attention vectors coming from all three views, sagittal, axial and coronal, which we will refer
to as (s), (a) and (c). As we saw in 2.3 one of the output of that Module is an Attention Vector,
computed after applying a softmax to our Feature Vectors, this is done to each plane for each
slice and what we end up with is Na, Ns and Nc number of Attention Vectors. We integrate the
attention weights αs, αc, and αa into a unified 3D attention map. The 3D attention map A is
constructed by applying the following operation to each voxel:

A[i, j, k] = αs[i] · αc[j] · αa[k] (1)

To make interpretation and comparison easier, we normalize the entire 3D attention map into
the range [0, 1], ensuring that the highest values correspond to areas of high diagnostic relevance.
We use min-max normalization:

A =
A−min(A)

max(A)−min(A)
(2)

A further step in order to achieve comparability across subjects, each MRI image, denoted by I,
was normalized to the MNI 152 standard space using the transformation function fMNI152, thus
Inorm = fMNI152(I).
This step is crucial for aligning brain structures across different individuals to facilitate the iden-
tification of AD-specific biomarkers.
The resulting map highlights the brain regions most significantly associated with the diagnostic
output of the network, offering insights into the pathological hallmarks of Alzheimer’s Disease
(AD) as learned by the model through its training process.
Heat Map
A binary heatmap, Hbinary, was generated to isolate regions of significant structural patterns as-
sociated with Alzheimer’s Disease (AD), utilizing a threshold θ set at the 99.9th percentile. The
binary heatmap is defined as:

Hbinary[i, j, k] =

{
1, if A[i, j, k] > θ

0, otherwise
(3)

For visualization purposes, the MRI data Inorm was augmented by overlaying Hbinary to enhance
the saliency of the regions implicated in AD:

IXAI = Inorm +Hbinary × δ (4)

where δ is an amplification factor set to 10.
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3 Results

3.1 Experimental Setup

Training was performed on the JEDI cluster at the Jülich Supercomputing Centre, utilizing
NVIDIA GH200 GPUs.
The model was first tested using the best configuration specified by the authors of the original
AXIAL paper and we then modified it to achieve better results.

Hyperparameter Original Values Final Values
num epochs 100 30
batch size 8 8
dropout 0.3 0.5
k folds 5 8
num slices 80 60
learning rate 0.0001 0.00005
weight decay 0.01 0.01
freeze first percentage 0.5 0.3
optimizer AdamW AdamW
patience(Early Stopping) 20 10

Table 1: Comparison of hyperparameter configurations

Before presenting the results, it is important to note that the tests were conducted on a rela-
tively small dataset, comprising fewer than 400 patients. This limited dataset size was the main
reason why our model—despite its complexity, with a backbone containing over 138 million pa-
rameters—was prone to overfitting on the training data.

To address this issue, we implemented several modifications. First, we increased the number
of folds in the cross-validation procedure, allowing the model to be trained on a larger portion of
the data. This helped reduce overfitting and improved the loss on the validation set. Additionally,
we reduced the spatial extent of the slices by selecting only the most informative ones. This not
only decreased the likelihood of overfitting but also accelerated the training process—an essential
consideration given that the model had to be trained within a 6-hour window due to cluster
limitations.
It is really important to notice that when using cross validation it’s fundamental to perform the
data division in the correct step, since a wrong split will cause data leakage causing the model
to have really high test accuracy scores only because the data subjects in validation and train get
mixed up.

3.2 Experimental Results

In this section we talk about the results obtained with our tests and compare them to the optimal
configuration described in the original paper, setting the same random seed for reproducibility.
Clinically, the most important sections used to predict Alzheimer are the coronal plane and the
axial plane. Coronal slices, especially those aligned perpendicular to the long axis of the hippocam-
pus, provide a clearer view of hippocampal atrophy. This orientation allows for better assessment
of the cavities formed by hippocampal degeneration, which are indicative of AD.
All test results are reported as the average across all folds used in our best configuration. Specifi-
cally, while the original paper computed model accuracy by averaging over 5 folds, our results are
based on an 8-fold cross-validation. To enable a clearer comparison, we also included box plots
of the results. Given the relatively small size of the dataset, there can be significant variance in
performance between different folds, which is an important factor to consider when interpreting
the results.
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Plane ACC SPE SEN MCC
Ours Original Ours Original Ours Original Ours Original

Coronal 85.30% 80.63% 78.21% 83.23% 91.02% 79.60% 69.24% 63.45%
Axial 84.17% 80.92% 75.33% 77.42% 89.91% 83.45% 66.32% 61.81%
Sagittal 81.79% 78.25% 73.21% 74.65% 86.73% 80.44% 61.13% 55.53%

Table 2: Average (across folds) performance comparison across different brain planes

(a) Coronal Plane (b) Axial Plane (c) Sagittal Plane

Figure 7: Accuracy curves for each anatomical plane on test and validation sets.

(a) Coronal Plane (b) Axial Plane (c) Sagittal Plane

Figure 8: Test metrics for each anatomical plane.

As shown in Table 2, our approach consistently outperforms the original model across all
anatomical planes in terms of accuracy, sensitivity, and MCC. The coronal plane achieves the
highest accuracy (85.30%) and excels in sensitivity (91.02%) and MCC (69.24%), reflecting its
importance in identifying hippocampal atrophy one of the key structural indicators of Alzheimer’s
disease. The axial plane similarly shows strong results in sensitivity (89.91%) and MCC (66.32%),
while the sagittal plane, though less clinically emphasized, still improves upon the baseline across
all metrics.

It is worth noting that our model exhibits lower specificity compared to the original configu-
ration. However, in the clinical context of Alzheimer’s disease, this trade-off is acceptable—higher
sensitivity is generally more desirable, as it reduces the risk of false negatives. Missing a
diagnosis of Alzheimer’s could delay intervention and treatment, which makes a more sensitive
model particularly valuable for early detection.

The accuracy curves in Figure 7 demonstrate a stable convergence behavior. The box plots
shown in figure 8 higher medians, particularly in the coronal and axial planes, indicating better
performance across folds.

3.3 Explainability

In this section, we show how the attention weights are distributed across planes. These visualiza-
tions enable the identification of brain regions that are most influential in the model’s predictions,
thereby enhancing the interpretability and clinical relevance of our results.

During inference, a 3D attention map (saved as a .npy file) that encodes the learned importance
values for each voxel. These raw attention maps are then normalized and center-padded to match
the dimensions of the anatomical MRI template.

Figure 9 illustrates the mean 3D attention map generated by our model, averaged across sub-
jects and overlaid on the MNI152 standard brain template. The map is derived by multiplicatively
combining the normalized attention weights from the axial, coronal, and sagittal prediction net-
works. The localization of the highlighted areas suggests the model’s capacity to pinpoint specific
brain parts critical for its diagnostic output. The histograms showing the averaged attention
distribution in Figure 10 give us a further insight on the importance density across planes.
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Figure 9: Visualization of mean 3D attention map from the entire dataset overlaid on the MNI152
template using Axial3D (VGG16).

Figure 10: Attention distribution for each plane averaged on all the five test to provide entire
dataset distributions

Figure 11: Visualization of mean 3D gradcam++ map from the entire dataset overlaid on the
MNI152 template using Axial3D (VGG16).

Gradient-weighted Class Activation Mapping (GradCAM) is a famous visual explanation tech-
nique used in CNNs to highlight important regions in an input image that a model focuses on when
making a prediction. As we can see in Figure 11, it struggles to pinpoint specific regions affecting
the diagnosis outcome.

Figure 12: GradCAM++ visualization of 10 slices for each plane selected randomly
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Table 3: Attention MAP Metrics by Brain Area

Brain Area Volume Attention % of Region

Mean STD Max Min

Hippocampus - right 1059 0.1020 0.1074 0.8053 0.0234 0.2256
Hippocampus - left 997 0.1006 0.1053 0.6655 0.0234 0.2124
Amygdala - left 399 0.1087 0.1094 0.7825 0.0234 0.2418
Lateral Orbitofrontal - left 345 0.0387 0.0139 0.0942 0.0235 0.0229
Amygdala - right 345 0.1076 0.1019 0.7106 0.0234 0.2091
Lateral Orbitofrontal - right 337 0.0382 0.0131 0.0855 0.0234 0.0224
Ventral Diencephalon - left 304 0.0680 0.0372 0.1726 0.0234 0.0498
Inferior Lateral Ventricle - right 297 0.1481 0.1792 0.9082 0.0234 0.2805
Inferior Lateral Ventricle - left 271 0.1578 0.1941 1.0000 0.0234 0.2559
Ventral Diencephalon - right 169 0.0625 0.0328 0.1504 0.0234 0.0277
Fusiform - right 155 0.0376 0.0092 0.0640 0.0234 0.0115
Parahippocampal - left 153 0.0520 0.0294 0.2061 0.0234 0.0565
Fusiform - left 136 0.0350 0.0105 0.0699 0.0234 0.0101
Parahippocampal - right 134 0.0599 0.0347 0.1790 0.0235 0.0495
Cerebellum Gray Matter - left 109 0.0355 0.0077 0.0479 0.0235 0.0015
Pallidum - left 88 0.0531 0.0321 0.1841 0.0239 0.0517
Cerebellum Gray Matter - right 70 0.0326 0.0067 0.0419 0.0234 0.0010
Pallidum - right 66 0.0542 0.0334 0.1672 0.0235 0.0388
Putamen - right 66 0.0639 0.0483 0.2168 0.0235 0.0100
Putamen - left 23 0.0415 0.0214 0.1112 0.0235 0.0035
Insula - right 11 0.0323 0.0080 0.0430 0.0261 0.0012
Superior Temporal - right 3 0.0251 0.0020 0.0279 0.0234 0.0001
Superior Temporal - left 3 0.0242 0.0002 0.0245 0.0240 0.0001

Table 4: GradCam metrics by Brain Area

Brain Area Volume Cam % of Region

Mean STD Max Min

Hippocampus - left 1084 0.8250 0.0482 0.9662 0.7529 0.2309
Hippocampus - right 473 0.7944 0.0347 0.8973 0.7529 0.1008
Superior Temporal - right 395 0.8465 0.0656 1.0000 0.7532 0.0156
Inferior Lateral Ventricle - left 306 0.7910 0.0254 0.8749 0.7530 0.2890
Superior Temporal - left 252 0.8128 0.0472 0.9443 0.7533 0.0099
Inferior Lateral Ventricle - right 181 0.7902 0.0262 0.8557 0.7529 0.1709
Middle Temporal - left 162 0.8421 0.0523 0.9468 0.7535 0.0057
Middle Temporal - right 157 0.8552 0.0479 0.9827 0.7576 0.0055
Inferior temporal - left 130 0.8067 0.0368 0.9023 0.7531 0.0080
Amygdala - right 110 0.7669 0.0116 0.8369 0.7529 0.0667
Fusiform - left 104 0.8013 0.0334 0.8932 0.7530 0.0077
Insula - right 73 0.8059 0.0414 0.9102 0.7529 0.0077
Putamen - right 54 0.8021 0.0298 0.8753 0.7563 0.0081
Entorhinal - right 8 0.7590 0.0043 0.7675 0.7547 0.0025
Ventral Diencephalon - right 7 0.7650 0.0048 0.7717 0.7579 0.0011
Parahippocampal - left 5 0.7657 0.0099 0.7827 0.7541 0.0018
Ventral Diencephalon - left 5 0.7732 0.0072 0.7837 0.7613 0.0008
Putamen - left 4 0.7590 0.0048 0.7670 0.7547 0.0006
Amygdala - left 3 0.7586 0.0066 0.7679 0.7532 0.0018
Inferior temporal - right 3 0.7573 0.0043 0.7633 0.7532 0.0002
Insula - left 2 0.7558 0.0010 0.7568 0.7548 0.0002
Fusiform - right 1 0.7601 0.0000 0.7601 0.7601 0.0001
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4 Conclusion

In this work, we replicated the results of “AXIAL: Attention-based eXplainability for Interpretable
Alzheimer’s Localized Diagnosis using 2D CNNs on 3D MRI brain scans”. We did not manage
to replicate the same results by using the same configuration and random seed provided by the
author; this could be due to some struggles we had during the initial dataset preparation. The
Alzheimer’s Disease Neuroimaging Initiative (ADNI) platform is going through some important
changes, leading to the deprecation of the current version of the Clinica software that enables the
data preprocessing of the raw dataset.

Anyhow, we were able to showcase improved diagnostic metrics through refined hyperpa-
rameter tuning and methodological adjustments.

Key achievements include superior accuracy, sensitivity, and MCC values compared to the
original AXIAL paper, especially in the clinically vital coronal and axial planes. For instance,
the coronal plane accuracy reached 85.30% with 91.02% sensitivity. These improvements were
realized despite the challenges of a relatively small dataset and model complexity, which were
managed by strategies like increased cross-validation folds and optimized slice selection.

We preferred a trade-off of lower specificity for higher sensitivity, since it’s clinically preferable
to minimize false negatives in the early detection of Alzheimer’s Disease.

We have integrated explainable AI (XAI), generating 3D heat maps that highlight AD-
indicative brain regions like the hippocampus and amygdala. We believe that this aspect might
be crucial for clinical relevance and model transparency. In our future work, we could potentially
expand on these methodologies to larger datasets and improve the data preprocessing pipeline
by selecting slices based on their importance, instead of slicing a block from the middle of the
brain.
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