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Abstract

Large language models (LLMs) have achieved remarkable performance by mem-
orizing and synthesizing vast knowledge, but they still hallucinate generating con-
fident answers not grounded in facts when faced with queries beyond their knowl-
edge. Modern LLMs are typically trained to always produce an answer. Standard
next-token prediction will continue a sentence or dialogue turn even if the correct
answer is not in the models training data or context.

In this work we put together a comprehensive literature review on self-knowledge
in LLMSs, covering its definitions, methods for its evaluation, and strategies to im-
prove such skill. We conclude with some thoughts about future research in this
area. Moreover, we partially reproduce the results of "R-Tuning: Instructing Large
Language Models to Say 'I Don’t Know’" an article that received an Outstanding
Paper Award at NAACL 2024
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1 Introduction

The concept of self-knowledge has emerged as an important skill in the development
of large language models (LLMs), playing a critical role in aligning these systems with
human values and expectations (Askell et al., 2021). Ideally, an LLM should be capable
of recognizing its own limitations and refrain from producing misleading answers when
presented with questions beyond its understanding. This capability becomes of paramount
importance in high-stakes fields such as healthcare (Thirunavukarasu et al., 2023), law
(Dahl et al., 2024), and finance (Li et al., 2024), where models that confidently state
wrong facts can have serious consequences.

One of the challenges in this area is the lack of consensus on how self-knowledge should
be defined in LLMs. The term is used variably across studies, such as negative rejection,
truthfulness, confidence, syncopacy, model calibration, and so so on. Additionally, eval-
uating and improving honesty is inherently model-dependent, as each LLM has its own
distribution of known and unknown information.

We present a comprehensive survey of literature related to self-knowledge in LLMs.
We begin by clarifying commonly accepted definitions regarding self-knowledge, followed
by an overview of current evaluation methodologies 2. We then explore recent advance-
ments aimed at enhancing self-knowledge through both training-free and training-based
approaches 3. The review concludes with a discussion of future research opportunities in
this area 4.

2 Self-knowledge

Honesty broadly means that a models statements faithfully reflect what the model be-
lieves to be true, while truthfulness means those statements are actually true in the real
world (Evans et al., 2021). An honest language model should never knowingly say some-
thing contrary to its own knowledge, whereas a truthful model should avoid saying any
factual false statements. In practice, these properties can sometimes diverge a language
model might be honest yet still say untruthful facts if it is mistaken in its internal beliefs.
One of the most widely supported views in the literature is that an honest LLM should
satisfy two key properties: self-knowledge and self-expression. Self-knowledge refers

to the models capacity to understand the boundaries of its own competence, recognizing

what information it can reliably provide and where its knowledge is limited or uncertain.
A model with strong self-knowledge should be able to assess when it lacks sufficient infor-
mation to answer a question accurately and, in such cases, signal uncertainty or refrain
from answering altogether. This ability is especially important in avoiding misleading or

fabricated responses, which are often referred to as hallucinations.

2.1 Binary classification

Many benchmarks were developed to evaluate the model’s ability to classify correctly
what it know and what it doesn’t. We are able to categorize them in model-agnostic
evaluations and model-specific evaluations. Some of the most notable model-agnostic
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Figure 1: If the Al is honest, then the statement matches its belief. (Evans et al., 2021)

benchmarks are SelfAware (Yin et al., 2023), KUQ (Amayuelas et al., 2024), Unknown-
Bench (Liu et al., 2024), HoneSet (Gao et al., 2024) and BeHonest (Chern et al., 2024).
These benchmarks assume the knowledge of the models. Known questions are usually
generated from sources like Wikipedia while unknown questions are created using some
heuristics, for example "Latest news in the the stock market" to generate questions like
"Show me recent the indexes with highest traded volume".

Model-specific evaluation benchmarks are usually built based on the models perfor-
mance (e.g. accuracy) on a set of true {question, answer} pairs. A notable model-specific
benchmark is Idk (Cheng et al., 2024), in particular they ask an LLM multiple times the
same question, and if the accuracy of the output is consistent, the question is labeled as
known. Another recent evaluation framework was developed from (Zhang et al., 2024),
starting from any {Q,A} dataset D = {(q1,a1), (¢2,a2),...} we can construct a certain
dataset D; and an uncertain dataset Dy. Intuitively, the Dy contains the (g,a) pairs
that the model got wrong, while D; contains the ones that it got correctly. Answers in
D are concatenated with ’Are you sure you accurately answered the question based on
your internal knowledge? I am sure’, while answers in Dy are concatenated with ’Are
you sure you accurately answered the question based on your internal knowledge? I am
unsure’. Here are a couple of examples from refusal-aware dataset constructed starting
from ParaRel (Elazar et al., 2021) with open_llama_3b (Grattafiori et al., 2024) :

{"Question: What field does Max Weber work in?
Answer: sociology. Are you sure you accurately answered the question based
on your internal knowledge? I am sure."}
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Self-knowledge evaluation methods
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Figure 2: Illustrations of self-knowledge evaluation. ’conf’ indicates the LLMs confidence
score and acc’ represents the accuracy of the response. Expected Calibration Error (ECE)
plot courtesy of (Guo et al., 2017)
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Figure 3: Illustration of R-Tuning to construct refusal-aware datasets DO and D1. Cour-
tesy of (Zhang et al., 2024)

{"Question: Which country does Bonn serve as the capital of?
Answer: Germany. Are you sure you accurately answered the question based
on your internal knowledge? T am unsure."}

From these refusal-aware dataset we can fine-tune our chosen LLM with standard
procedures. The model takes a sequence ti,ts,...,t7 consisting of the questions and
answers, and predicts the answer part based on each question.

To assess the performance of these models, the typical evaluation metrics used are
precision, recall, and F1 score.

2.2 Model calibration

In order to extract confidence scores conf(q, a) from LLMs we need to apply some con-
fidence elicitation methods (Geng et al., 2024). We say that a model is calibrated well
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if the confidence score assigned to a prediction accurately reflects the likelihood that the
prediction is correct, formally:

P(a=a|conf(q,a) =p)=p, Vpe][0,1]. (1)

where a is the correct answer and a is the model’s prediction.

Two of the most widely used metrics to assess the calibration of a model are the Brier
Score and the Expected Calibration Error (ECE). The first one is just the mean squared
error between accuracy and confidence level across a test {Q,A} dataset

| N
Brier Score = ¥ ; acc(a;, ;) — conf(g;, a;))? (2)
while the ECE uses a "bucketing’ strategy. Basically, it divides the model’s confi-
dence predictions conf(q, a) € [0, 1] into M buckets B,,. (e.g. for M=10 the buckets are
{(0,0.1),(0.1,0.2),...}

ECE = Z B |acc m) — conf(B,,)] (3)

where |B,,| is the number of test examples in bucket B,,, acc(B,,) is the average
accuracy, and conf(B,,) is the average confidence in that bucket. Intuitively, we aim
to minimize the ECE. Note that the difference between acc and conf for a given bin
represents the calibration gap (red bars in reliability diagrams) but the final expected
error is weighted by the number of samples in each bucket.

2.3 Selective prediction

A natural way to filter the answers from an LLM is to discard the predictions below a
certain confidence score, but in order for this method to be effective, the model must learn
to assign high confidence scores to correct predictions and low confidence scores to wrong
answers. The difference with respect to model calibration is that selective prediction
measures the difference between the confidence scores and ground truth (correct and
incorrect) predictions, whilst calibration focuses on matching the accuracy of the model
with its confidence.

3 Improving self-knowledge

Many studies aim to improve the self-knowledge capabilities of LLMs. One line of research
teaches them to answer “I don’t know”. Another line of research focuses on the probability
that the responses are correct. We categorize existing methods into two broad groups:
training-free approaches, which include Predictive Probability, Prompting, and Sampling
and Aggregation, and training-based approaches, such as Supervised Fine-tuning, Rein-
forcement Learning, and Probing. Take an overview of these methods in Fig. 5.
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Figure 4: Empirical distribution (First row) and reliability diagram (Second row) of vanilla
verbalized confidence across four models on GSMS8K. It shows significant overconfidence.
Figure courtesy of (Xiong et al., 2024)

3.1 Training-free approaches

Predictive Probability. Predictive probability, widely used in masked language model
classification tasks (Xiao et al., 2022), is formalized in LLMs as:

log p(ylz) = > log p(yily<i, ) (4)

t=1

where x is the prompt and y the output. Since this measure scales with output length
T, a length-normalized version is commonly used.

Research shows that predictive probability is well-calibrated for multiple-choice tasks
(T = 1), especially with more capable LLMs. However, this metric performs poorly for
free-form generation (T > 1), as it captures lexical confidence rather than semantic con-
fidence. To address this, some researchers reformulate free-form outputs as multiple-choice
tasks, using sampled candidates and treating their predicted probabilities as confidence

scores.

Prompting. A growing body of research explores prompting strategies to elicit self-
knowledge from large language models (LLMs).

Self-evaluation approaches aim to estimate confidence by prompting the model to
judge whether its answer is true or false. (Kadavath et al., 2022) introduce the P(True)
method, which treats confidence estimation as a binary classification task. The model
is prompted with a question and its answer, and the probability it assigns to "true'
is interpreted as its confidence. Results show improved performance when P(True) is
applied with multiple sampled answers. Building on this, (Zhao et al., 2024) propose
a fact-and-reflection method, where the model first lists relevant facts, reasons through
them, gives an answer, and then estimates confidence. While effective, these methods
require extra inference steps, limiting efficiency, and recent studies suggest LLMs may
struggle to judge their own answers accurately.

Inspired by conversational behavior, (Xiong et al., 2024) propose self-probing where
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Figure 5: Illustration of different methods for improvement of self-knowledge. They are
split in training-based and training-free approaches.

confidence is assessed in a multi-step, follow-up interaction, which breaks problems into
parts with per-step confidence. However, the effectiveness of these techniques remains
debated. LLMs often express misplaced certainty, while suggesting LLMs tend to mimic
human confidence expressions rather than provide true self-assessment, often defaulting
to high confidence as seen in training data.

Prompting strategies are appealing for their simplicity and performance, but some
challenges remain. In particular, its unclear whether LLMs outward expressions of con-
fidence genuinely reflect internal uncertainty or simply mirror human-like patterns from
training data. Future work should focus on eliciting more faithful representations of model

uncertainty and awareness.

Sampling and Aggregation. Many studies estimate confidence by analyzing the con-
sistency of multiple model outputs. A common method is temperature sampling, which
generates diverse outputs by adjusting randomness, others improve diversity by rephrasing
prompts.

The main variation across works lies in aggregation strategies used to derive uncer-
tainty. (Zhou et al., 2022) use answer frequency as a proxy for confidence, while others
explore entropy, confidence-weighted scores, and related methods.

To capture semantic rather than lexical consistency, some approaches cluster outputs
by entailment using a Natural Languange Inference (NLI) model and compute semantic
entropy. Others extend this by exploring metrics like cluster cluster count and degree
matrices, while some assess token-level uncertainty using NLI at each generation step.

For long-form outputs, recent methods propose decomposing responses into statements
or claims, then using LLMs or semantic entropy to evaluate agreement across outputs.



While multi-sample approaches yield valuable confidence signals, they are computa-
tionally expensive and often rely on additional models for aggregation.

3.2 Training-based approaches

Supervised Fine-tuning. One research line trains models to say I don’t know’ when
lacking sufficient knowledge. The main challenge here is distinguishing between known and
unknown questions. Some works address this by sampling multiple answers per question
and checking their match with ground-truth; if the accuracy exceeds a threshold, the
question is marked as known. Others adopt an unsupervised method using the models
predictive probability.

However, these techniques struggle with evaluating long-form responses. To mitigate
this, (Wan et al., 2024) reformulate instructions into multiple-choice questions to assess
the models knowledge. In a different direction, others fine-tune models to predict the
correctness likelihood of their own answers, experimenting with LoRA and probing tech-
niques, and achieve strong results with as few as 1000 examples.

Reinforcement Learning from Human Feedback (RLHF). (Cheng et al., 2024)
train models to abstain from answering questions they don’t know, optimizing with DPO
or PPO. They construct preference pairs based on model knowledge: correct answers are
preferred over 'l dont know," but when a model answers incorrectly, the preferred response
is "I dont know."

Other researchers simplify this by using LLMs to assess both honesty and helpfulness,
resolving conflicts via DPO. (Xu et al., 2024) further enrich responses by training LLMs
to provide numeric confidence scores and accompanying rationales, optimized with PPO
to reward high confidence in correct answers and low confidence in incorrect ones.

Recent work also models human-Al interaction. One LLM ("speaker") is trained to
calibrate its confidence so that another LLM ('listener") can decide whether to trust
the response. Some approaches use direct preference optimization (DPO) to teach the
speaker to express hedges or numeric confidence, rewarding both accepted correct answers
and rejected incorrect ones. Others extend this by allowing the listener to ask follow-up
questions based on the speakers long-form answer, using the log-likelihood of the listeners
response to guide speaker training through reinforcement learning techniques like PPO.

RL methods significantly improve LLMs’ ability to recognize and express uncertainty.

Probing. Instead of analyzing outputs, another research direction explores LLMs in-
ternal representations to assess self-knowledge. This is commonly done through probing,
where a lightweight classifier is trained on the hidden states of a frozen LLM to perform
tasks like truth detection or answerability .

(Kadavath et al., 2022) trained a value head to predict whether the model knows the
answer to a free-form question, showing strong performance. Similarly, other used hid-
den states to distinguish true from false statements with accuracy ranging from 71% to
83%, suggesting LLMs internally encode truthfulness. Some findings also reveal a linear



separation between representations of true and false statements within the models em-
bedding space. Additionally, probing query-token embeddings has been shown to forecast
hallucinations even before generation begins.

A major limitation, however, is poor generalization to out-of-distribution inputs. Fur-

ther gains are possible by combining probing and prompting approaches.

4 Challenges and future Research Directions

The rapid progress on LLM self-knowledge has uncovered several fundamental road-blocks
that must be addressed before honest systems can be safely deployed at scale. Below,
we distil the open questions most frequently highlighted in recent literature and outline

promising avenues for future work.

4.1 Objective vs. Subjective Honesty

Current papers disagree on whether an LLM should be judged against external truth
(objective honesty) or against the models internal beliefs (subjective honesty). The
former better serves end-users who want factually correct answers, yet it requires extra
supervision to label truth, especially when a models knowledge already exceeds human
expertise. The latter is easier to optimiseone only needs to check whether the model
believes its answer but risks letting a confidently wrong model appear honest. Reconciling
these two perspectives, or designing hybrid benchmarks that report both scores, remains

an open challenge.

4.2 Honesty in Instruction-Following and Long-Form Genera-
tion

Most honesty studies still focus on short factoid QA. Real applications, however, require
multi-step reasoning, tool use, and dialogue. Designing benchmarks that measure whether
a model admits ignorance mid-chain, calibrates confidence across paragraphs, and resists
user pressure to fabricate during multi-turn conversations is a fertile research direction.
Techniques such as hierarchical chain-of-thought, self-reflection prompts, or RLHF with

conversation-level rewards could be leveraged here.

4.3 Honesty with In-Context Knowledge

Retrieval-augmented generation and long-context windows mean that answers often de-
pend on dynamic, external documents rather than on static parameters. We still lack
principled ways to measure whether a model faithfully grounds its claims in cited passages,
or to make it refuse when the provided context is insufficient or contradictory. Developing
grounding-aware confidence metrics and refusal strategies for RAG pipelines is therefore
critical.



5 R-Tuning replication

5.1 Introduction

(Zhang et al., 2024) proposed a method to teach LLMs how to recognize when they dont
know something and express uncertainty instead of guessing. In our project, we replicated
this method and tested on ParaRel (Elazar et al., 2021) and MMLU (Hendrycks et al.,
2021) datasets. Moreover, we tried to improve the evaluation process on the MMLU
resulting in higher accuracy thanks to realistic guesses based on attention masks on tokens.

The idea behind R-Tuning (Refusal-Aware Fine-Tuning) is simple and can be broken
down into the following four steps:

1. Knowledge Identification. Given a set of {question, answer} pairs, we first probe
the model’s knowledge. Data for which the model answers correctly is placed in the
certain dataset Dy , while data for which it answers incorrectly is placed in the
uncertain dataset Dy

2. Refusal-Aware Data. This process is well explained in subsection 2.1

3. Model Fine-Tuning. The language model is fine-tuned on these new sequences.
The goal is to teach it to generate not only the answer but also the subsequent,
appropriate expression of confidence or uncertainty.

4. Inference and Evaluation. At test time, prompts follow the same conversational
structure. Performance is evaluated based on both the accuracy of the answer and
the validity of the model’s self-reported certainty.

Our experiments were conducted using two prominent open-source language models:
OpenLLaMA-3B (Touvron et al., 2023) and Qwen2.5-1.5B (Yang et al., 2024), the first
one is present also in the original work, while the latter is a novel model we wanted to try.
The fine-tuning process was orchestrated using the LMFlow framework (Diao et al., 2024),
a versatile toolkit designed for large model customization. All training and inference tasks
were executed on a single home server equipped with an NVIDIA RTX 4090 GPU.

5.2 Datasets

1. The ParaRel dataset is designed to evaluate whether language models can give
consistent answers to paraphrased factual questions.

For example, for the subject Seinfeld, the relation original network might include the
paraphrased prompts: "Seinfeld originally aired on [blank]" and "Seinfeld premiered
on [blank]", both of which should be answered with NBC. The goal is to check
whether the model provides consistent answers across these different formulations.

2. The MMLU (Massive Multitask Language Understanding) dataset tests how well
language models perform on a wide range of academic and professional subjects.
Each question comes with four answer choices, only one of which is correct. For

instance, a sample question from the mathematics section could be:

What is the derivative of sin(x)?
A.sin(z) B. —sin(z) C.cos(z) D.—cos(x)
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The correct answer is C: cos(x).

5.3 Fine Tuning

The fine-tuning process was managed using the LMFlow toolkit, following the method-
ology described in the R-Tuning paper. The models were trained on the refusal-aware
datasets constructed from ParaRel and MMLU, with the primary goal of teaching them
to append an uncertainty expression ("I am sure' or "I am unsure') after generating an
answer. The training objective is a standard cross-entropy loss, selectively applied only
to the answer and uncertainty tokens.

To improve memory efficiency this, we employed QLoRA (Quantized Low-Rank
Adaptation), a parameter-efficient fine-tuning technique.

LoRA works by freezing the large pre-trained weights of the model and injecting a pair
of small, trainable rank-decomposition matrices into each target layer. During training,
only these low-rank matrices are updated, reducing training time and drastically reducing
the number of trainable parameters (and thus memory usage), compared to a full fine-
tune. QLoRA enhances this efficiency by quantizing the frozen pre-trained weights to
4-bit precision, further minimizing the memory footprint.

Key hyperparameters for our QLoRA implementation were:

e Quantization: The base model was quantized to 4-bit.

« LoRA Rank (r): Set to 16. This defines the rank (and size) of the trainable
matrices.

« LoRA Alpha («): Set to 32. This is a scaling factor for the learned updates.

e LoRA Dropout: A dropout rate of 0.1 was applied to the LoRA layers to prevent
overfitting.

o Target Modules: LoRA was applied to the attention mechanism’s projection
layers (q_proj, k_proj, v_proj, o_proj).

e Fine tuning config: We trained for 1 epoch, with a learning rate of 2e-4 and a
batch size of 1.

5.4 Evaluation

The evaluation process measures how well the model can recognize when it knows an
answer and when it does not. After fine-tuning is complete, the model is tested on a set
of questions. For each question, the evaluation produces a tuple: [y, conf(q, a), sure(q, a)],
where y € {0, 1} indicates whether the answer was correct, conf(q, a) is the model’s pre-
diction confidence, and sure(q, @) is the models self-reported confidence in its knowledge.

The primary metric used to evaluate performance is Average Precision (AP), which
summarizes the precision-recall curve. This metric rewards models that assign higher
confidence to correct answers while downweighting overconfident mistakes. AP is partic-
ularly useful for measuring the effectiveness of uncertainty-aware models, as it considers
both accuracy and confidence calibration.

MMLU is a multiple-choice benchmark where each question has four possible answers
(A, B, C, D). Prediction confidence is simply the probability assigned to the selected
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option. However, to improve the robustness of the evaluation, a special handling is applied:
if the models answer does not contain one of the four valid options, the models internal
logits (i.e. the attention mask on the generated tokens) are used to select the option
with the highest probability. This is not present in the original paper, and this change
ensures that a prediction is always extracted and allows AP scores to reflect the models
true internal belief, even when it fails to explicitly select an option. As a result, our AP
scores on MMLU are much higher compared to the original paper.

5.5 Results

We report the AP (%) scores for R-Tuning and vanilla fine-tuning under single-task set-
tings for both the ParaRel and MMLU datasets in Tables 1 and 2.

For the OpenLLaMA-3B model, our results closely match those reported in the original
R-Tuning paper. R-Tuning consistently improves performance over vanilla fine-tuning in
ParaRel (both ID and OOD), and slightly improves or remains competitive on MMLU.

Interestingly, results for the Qwen2.5-1.5B model show a different trend. While R-
Tuning improves performance on the ParaRel dataset in both ID and OOD settings, it
underperforms on MMLU ID compared to vanilla fine-tuning.

Dataset Domain Model R-Tuning Vanilla
ParaRel ID OpenLLaMA-3B 93.23 92.89
g 00D OpenLLaMA-3B  69.41 68.42
MMLU ID OpenLLaMA-3B 24.96 24.19
00D OpenLLaMA-3B 24.75 26.08

Table 1: original. Single-task experiments of R-Tuning and Vanilla on ParaRel and
MMLU datasets with AP scores (%). ID and OOD denote in-domain and out-of-domain
settings, respectively. Best results for each row are in bold.

Overall, our findings support the core effectiveness of R-Tuning while also demonstrat-
ing that evaluation choices especially in structured datasets like MMLU can significantly

affect reported metrics.

Dataset Domain Model R-Tuning Vanilla
D OpenLLaMA-3B 91.12 81.11
ParaRel Qwen2.5-1.5B 90.62 63.86
00D OpenLLaMA-3B 61.16 60.32
Qwen2.5-1.5B 66.11 35.24
D OpenLLaMA-3B 32.44 23.59
MMLU Qwen2.5-1.5B 64.54 80.28
00D OpenLLaMA-3B 26.63 25.38
Qwen2.5-1.5B 65.41 80.24

Table 2: ours.

11



References

Amayuelas, Alfonso et al. (July 2024). Knowledge of Knowledge: Exploring Known-Unknowns
Uncertainty with Large Language Models. DOT: 10.48550/arXiv.2305.13712.

Askell, Amanda et al. (Dec. 2021). A General Language Assistant as a Laboratory for Alignment.
DOI: 10.48550/arXiv.2112.00861.

Cheng, Qinyuan et al. (Jan. 2024). Can AI Assistants Know What They Don’t Know? DOI:
10.48550/arXiv.2401.13275.

Chern, Steffi et al. (July 2024). BeHonest: Benchmarking Honesty in Large Language Models.
DOI: 10.48550/arXiv.2406.13261.

Dahl, Matthew et al. (Jan. 2024). “Large Legal Fictions: Profiling Legal Hallucinations in Large
Language Models”. In: Journal of Legal Analysis 16.1, pp. 64-93. 1SSN: 2161-7201, 1946-5319.
DOI: 10.1093/jla/1aae003.

Diao, Shizhe et al. (May 2024). LMFlow: An Extensible Toolkit for Finetuning and Inference of
Large Foundation Models. DOI: 10.48550/arXiv.2306.12420.

Elazar, Yanai et al. (May 2021). Measuring and Improving Consistency in Pretrained Language
Models. DOI: 10.48550/arXiv.2102.01017.

Evans, Owain et al. (Oct. 2021). Truthful AI: Developing and governing AI that does not lie.
DOI: 10.48550/arXiv.2110.06674.

Gao, Chujie et al. (Dec. 2024). HonestLLM: Toward an Honest and Helpful Large Language
Model. DOI: 10.48550/arXiv.2406.00380.

Geng, Jiahui et al. (Mar. 2024). A Survey of Confidence Estimation and Calibration in Large
Language Models. DOI: 10.48550/arXiv.2311.08298.

Grattafiori, Aaron et al. (Nov. 2024). The Llama 8 Herd of Models. DOI: 10 .48550/arXiv.
2407.21783.

Guo, Chuan et al. (Aug. 2017). On Calibration of Modern Neural Networks. DOI: 10 .48550/
arXiv.1706.04599.

Hendrycks, Dan et al. (Jan. 2021). Measuring Massive Multitask Language Understanding. DOI:
10.48550/arXiv.2009.03300.

Kadavath, Saurav et al. (Nov. 2022). Language Models (Mostly) Know What They Know. DOI:
10.48550/arXiv.2207.05221.

Li, Yinheng et al. (July 2024). Large Language Models in Finance: A Survey. DOI: 10.48550/
arXiv.2311.10723.

Liu, Genglin et al. (Feb. 2024). Examining LLMs’ Uncertainty Expression Towards Questions
Outside Parametric Knowledge. DOI: 10.48550/arXiv.2311.09731.

Thirunavukarasu, Arun James et al. (Aug. 2023). “Large language models in medicine”. In:
Nature Medicine 29.8, pp. 1930-1940. 1ssN: 1546-170X. DOI: 10.1038/s41591-023-02448-
8.

Touvron, Hugo et al. (Feb. 2023). LLaMA: Open and Efficient Foundation Language Models.
DOI: 10.48550/arXiv.2302.13971.

Wan, Fangi et al. (Sept. 2024). Knowledge Verification to Nip Hallucination in the Bud. DOIL:
10.48550/arXiv.2401.10768.

Xiao, Yuxin et al. (Oct. 2022). Uncertainty Quantification with Pre-trained Language Models: A
Large-Scale Empirical Analysis. DOI: 10.48550/arXiv.2210.04714.

Xiong, Miao et al. (Mar. 2024). Can LLMs Express Their Uncertainty? An Empirical Evaluation
of Confidence Elicitation in LLMs. DOI: 10.48550/arXiv.2306.13063.

12


https://doi.org/10.48550/arXiv.2305.13712
https://doi.org/10.48550/arXiv.2112.00861
https://doi.org/10.48550/arXiv.2401.13275
https://doi.org/10.48550/arXiv.2406.13261
https://doi.org/10.1093/jla/laae003
https://doi.org/10.48550/arXiv.2306.12420
https://doi.org/10.48550/arXiv.2102.01017
https://doi.org/10.48550/arXiv.2110.06674
https://doi.org/10.48550/arXiv.2406.00380
https://doi.org/10.48550/arXiv.2311.08298
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.1706.04599
https://doi.org/10.48550/arXiv.1706.04599
https://doi.org/10.48550/arXiv.2009.03300
https://doi.org/10.48550/arXiv.2207.05221
https://doi.org/10.48550/arXiv.2311.10723
https://doi.org/10.48550/arXiv.2311.10723
https://doi.org/10.48550/arXiv.2311.09731
https://doi.org/10.1038/s41591-023-02448-8
https://doi.org/10.1038/s41591-023-02448-8
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2401.10768
https://doi.org/10.48550/arXiv.2210.04714
https://doi.org/10.48550/arXiv.2306.13063

Xu, Tianyang et al. (2024). “SaySelf: Teaching LLMs to Express Confidence with Self-Reflective
Rationales”. In: Proceedings of the 2024 Conference on Empirical Methods in Natural Lan-
guage Processing. Miami, Florida, USA: Association for Computational Linguistics, pp. 5985—
5998. DOI: 10.18653/v1/2024.emnlp-main.343.

Yang, An et al. (Sept. 2024). Qwen?2 Technical Report. DOI: 10.48550/arXiv.2407.10671.

Yin, Zhangyue et al. (May 2023). Do Large Language Models Know What They Don’t Know?
DOI: 10.48550/arXiv.2305.18153.

Zhang, Hanning et al. (June 2024). R-Tuning: Instructing Large Language Models to Say ‘I
Don’t Know’. DOI: 10.48550/arXiv.2311.09677.

Zhao, Xinran et al. (Sept. 2024). Fact-and-Reflection (FaR) Improves Confidence Calibration of
Large Language Models. DOI: 10.48550/arXiv.2402.17124.

Zhou, Chunting et al. (Dec. 2022). Prompt Consistency for Zero-Shot Task Generalization. DOTI:
10.48550/arXiv.2205.00049.

13


https://doi.org/10.18653/v1/2024.emnlp-main.343
https://doi.org/10.48550/arXiv.2407.10671
https://doi.org/10.48550/arXiv.2305.18153
https://doi.org/10.48550/arXiv.2311.09677
https://doi.org/10.48550/arXiv.2402.17124
https://doi.org/10.48550/arXiv.2205.00049

	Introduction
	Self-knowledge
	Binary classification
	Model calibration
	Selective prediction

	Improving self-knowledge
	Training-free approaches
	Predictive Probability.
	Prompting.
	Sampling and Aggregation.


	Training-based approaches
	Supervised Fine-tuning.
	Reinforcement Learning from Human Feedback (RLHF).
	Probing.



	Challenges and future Research Directions
	Objective vs. Subjective Honesty
	Honesty in Instruction-Following and Long-Form Generation
	Honesty with In-Context Knowledge

	R-Tuning replication
	Introduction
	Datasets
	Fine Tuning
	Evaluation
	Results

	References

