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Abstract

This thesis is the result of the work conducted at the OmnAT research lab based in
Sapienza University of Rome from February 2024 to June 2024. The main objective
is to study the generative properties of adversarially trained classifiers and exploit
their robustness to make a diffusion model perform conditional sampling or, in other
words, classifier guidance.

This research bridges an important gap in the field of Diffusion Models’ condi-
tional image generation since it is currently believed that it is not possible to use
an off-the-shelf robust classifier to achieve classifier guidance. We challenge this
belief by demonstrating that robust classifiers can effectively guide unconditional
diffusion models without having to re-train a time-dependent classifier based on the
DM’s noise scheduler. In our work, we introduce novel approaches to successfully
achieve this task by interpreting a Standard Adversarially Trained classifier as a
generative Energy-Based Model, effectively achieving Classifier-free guidance in a
Diffusion Model yet using a Robust Classifier.
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Chapter 1

Introduction

Since the advent of artificial intelligence (AI), researchers have aspired to create
machines capable of generating images as realistic as those perceived by the human
eye. This pursuit involves developing algorithms that can produce new images by
learning the probability distribution of data over existing ones. Over the years, the
field has witnessed extraordinary progress, primarily fueled by advancements in
machine learning (ML), most notably deep learning.

Machine Learning

Deep Learning

Figure 1.1. A Venn diagram showing the idea of the relation between AI, Machine Learning
and Deep learning.

1.1 Discriminative vs Generative Al

Al models can be broadly categorized into discriminative and generative. Dis-
criminative models, such as those used in image classification, focus on distinguishing
between different data classes by learning decision boundaries ([1] Bishop 2006).
Convolutional neural networks (CNN) ([2] O’Shea and Nash 2015) are excellent at
tasks like object recognition; in particular, the creation of AlexNet by [3] Krizhevsky
et al. 2012 revolutionized the way to approach image classification; it was one of
the first significant deep-learning models to be trained using Graphics processing
units (GPU). In fact, they were able to train a CNN so well that it broke the record
for image classification and localization metrics, winning the ImageNet Large Scale
Visual Recognition Challenge 2012;



1.1 Discriminative vs Generative Al 2

Despite the great performance of Deep Learning Models, [4] Szegedy et al. 2014
discovered that Neural Networks (in particular discriminative models) suffer from
adversarial attacks that demolish any state-of-the-art model’s performance metrics.
Adversarial attacks are small data perturbations, often undetectable by human
perception. Therefore, robust classifiers were trained to resist these attacks.

adversarial
perturbation

88% tabby cat 99% guacamole

Figure 1.2. An imperceptible perturbation in the image fools the InceptionV3 network by
Google into believing that a cat is guacamole. Image taken from !.

Generative models aim to understand the underlying input data distribution to
create new, synthetic data points. A groundbreaking innovation in this realm was the
introduction of Generative Adversarial Networks (GAN) by [5] Goodfellow et al. 2014.
GANSs consist of two neural networks—a generator and a discriminator—that engage
in a dynamic adversarial training process where the discriminator learns to recognize
fake images from real images. In contrast, the generator tries to fool the discriminator
during each training step by generating images that are indistinguishable from the
real ones .

Recently, [6] Sohl-Dickstein et al. 2015 introduced diffusion models (DM), which
transform pure Gaussian noise sampled from a standard normal distribution into
complex and high-quality images by approximating the inverse of a stochastic
differential equation (SDE) defined in the forward process.

After that, [7] Ho et al. 2020 introduced Denoising Diffusion Probabilistic Models
(DDPM), setting top benchmarks in image synthesis by refining noisy images into
clear ones through a series of denoising steps. [8] Dhariwal and Nichol 2021 showed
that diffusion techniques can surpass GANs in generated image quality and diversity
metrics such as Frechet Inception Distance (FID) (][9] Heusel et al. 2018) and
Inception Score (IS).

Figure 1.3. An astronaut riding a horse generated by Dall-E 3 through ChatGPT-4o.

Thttps://github.com/anishathalye/obfuscated-gradients
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Further enriching the landscape are Energy-Based Models (EBMs), which utilize
energy functions to model data distributions. [10] Lecun et al. 2006 highlighted
that EBMs provide robust learning algorithms for complex data distributions,
adding to the diversity of generative modelling techniques. Meanwhile, Variational
Autoencoders (VAEs), introduced by [11] Kingma and Welling 2022, combined
neural networks with probabilistic graphical models to generate new data points
from learned latent representations.

Recent years have witnessed astonishing advancements proven by models like
DALL-E by OpenAl, Stable Diffusion by Stability AI and Midjourney, which can
generate ultra-detailed and diverse images from textual descriptions exploiting
the power of diffusion models, and pushing the frontiers of creativity and design.
Moreover, recent innovations like Sora by OpenAl have extended these capabilities
even further, enabling the generation of videos and expanding the horizons of Al in
visual media. In figure 1.3, you can see an image we have generated using Dall-E 3;
Nowadays, anyone can write a prompt to generate images that match similar quality
from text-to-image models available online.

Although generative models are incredibly capable, they require massive amounts
of training data and enormous computing power costs, making it prohibitively
expensive to retrain them often.

1.2 Thesis Outline

The thesis begins by recalling some background theory of Diffusion Models and
their evolution over time, starting from concepts rooted in Statistical Mechanics
and Physics, such as discrete-time Markov chains and Langevin Dynamics. Next,
we discuss the definition of score functions and their application in modeling the
underlying input data distribution to gradually transform a random data point
sampled from a standard Gaussian distribution into a realistic image. Following this,
we explore DDPMs and DDIMs, which are practical implementations of Diffusion
Models through the training of a time-dependent denoising neural network. We also
study the theoretical derivation and practical application of conditional sampling,
thanks to Classifier Guidance and Classifier-free Guidance. Subsequently, we explain
how an adversarial classifier is trained using the Fast Gradient Sign Method (FGSM)
and Projected Gradient Descent (PGD) attacks. We conclude the background
chapter by looking into the process of converting a discriminative neural network
into a generative energy-based model.

In the related work section, we review three papers that are closely linked to
our research, highlighting how their discoveries provide valuable insights into the
behaviour of robust models in a generative modeling scenario.

The fourth chapter of this thesis dives into the theoretical study and practical
experiments of our research, with a primary focus on enabling a robust classifier to
successfully guide a diffusion model.

Finally, we conclude with a brief summary of our work and outline our future
research directions.



1.3 Contribution 4

1.3 Contribution

To achieve classifier guidance using a pre-trained diffusion model, a separate
time-dependent classifier must typically be trained on noisy images to successfully
induce conditional image synthesis during the reverse diffusion process.

It is currently believed that:

44

. an off-the-shelf adversarially trained robust classifier would not fit
our purpose in this context...”

as stated by [12] Kawar et al. 2023 in his proposed method section.

This thesis explores the generative properties of robust classifiers and how they
can be utilized to successfully achieve classifier guidance. After reproducing the
results of the pre-trained diffusion model and the robust classifiers, we analyze the
connection between a classifier trained with standard adversarial training using
e-ball projected gradient descent attacks and their robustness to Gaussian noise
added during the forward diffusion process.

We also examine the interpretation of the same classifiers when turned into
energy-based models and how their gradients influence the conditional generation
process. We find that the training e-radius of a robust classifier is correlated with
the quality of the images it helps to generate, with the more robust models leading
to fewer hallucinations.

Additionally, we analyze and interpret the differences between the energy of
the natural training data (in this case, CIFAR-10) and the conditionally sampled
data, providing insights into the role of EBMs in generative modeling. In our
experiments, we find that class-conditional energy is more informative than the
ordinary class-conditional probability.

Throughout the research, we continuously experiment with different settings,
providing the intuition behind certain methods as well as a formalized methodology to
allow reproducibility. We argue how our choices are supported by existing literature
and "grounded" intuition, with the goal of always achieving better outcomes. Along
the experiments, we show class-conditioned samples generated by the relative method,
proving that classifier guidance is actually achievable by means of a robust classifier.



Chapter 2

Background

Before going into the details of our study, let’s establish the concepts needed
for a comprehensive understanding of the material. This chapter provides formal
definitions of the mathematical models and some intuitions behind them. But first,
let’s understand, in general, how a model learns to generate new images.

Figure 2.1. High-level illustration of sampling new images from a model distribution py.

Assume we want to generate images of cats and dogs; these two classes of images
each contain common features and underlying patterns. In machine learning, it is
assumed that the data points (in this case, images of cats and dogs) are i.i.d., forming
an unknown underlying probability distribution p, called data distribution; in
general, a model’s objective is to approximate the latter as accurately as possible by
tuning its (usually) numerous parameters represented by €, and so, shaping its own
representation of "reality", the model distribution pg. The dataset is sampled
from p, and is denoted as pgata. Therefore, py is learned by approximating the
distribution of the training set X ~ pgata, S0 that we can draw new images from the
learned py, and hopefully, they are realistic pictures of cats and dogs that do not
actually "exist"!

We really want to put some emphasis on the last statement since it is relatively
trivial for a model to generate images already present in the dataset; the true
challenge of Generative Models is to create diverse and high-quality images that are
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indistinguishable from real ones without requiring excessive computational power.

Generative H 'g_h Denoising
Adversarial Quality Diffusion
Networks Samples Models

wr

Fast Cg/\lrzcrj:ge
Sampling Diversity

Variational Autoencoders,
Normalizing Flows

Figure 2.2. The generative trilemma. Image from Nvidia®.

2.1 From Statistical Mechanics to Deep Learning

A discrete-time Markov Chain (DTMC) is a sequence of random variables char-
acterized by the memorylessness property, meaning that the probability of future
states depends only on the current state; it is easily formalized as follows:

Let {X,, : n > 0} be a positive recurrent Markov Chain, then ¥n > 0
Pr {XnJrl ‘ Xn, anl, e ,Xo} =Pr {Xn+1 | Xn} (21)

Another essential property of Markov Chains under certain conditions is re-
versibility, which was leveraged for generating images by [6] Sohl-Dickstein et al.
2015. The authors introduced a novel generative Al algorithm, where the primary
objective was to transform a simple known distribution (e.g., a Gaussian distribution)
into a target data distribution through a diffusion process. However, it’s important
to note that this work didn’t directly build upon traditional Markov Chains; instead,
a probabilistic model was explicitly defined as the endpoint of the Markov Chain.
The idea of gradually converting one distribution to another is directly inspired by
non-equilibrium statistical physics [13] Jarzynski 1997.

Furthermore, the formulation of this approach includes mathematical tools
beyond Markov Chains. Concepts from physics, such as Langevin dynamics ([14]
Langevin 1908), which is the stochastic realization of the Fokker-Planck equation,
were utilized to define a Gaussian diffusion process that attains a distribution as its
equilibrium. Additionally, the Kolmogorov forward and backward equations ([15]
Feller 1949) were employed to prove that many forward diffusion processes can be
described with the same functional form as their reverse processes.

"https://www.nvidia.com/en-us/glossary/generative-ai
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2.2 Score-based generative modeling

fg X) efe (x)

O0—O0—0O

ef@ (X)
Tg = pe(X)

Figure 2.3. High-level illustration of a DNN mapping images to a probability measure.

It is extremely challenging to estimate the underlying probability distribution
of high dimensional data accurately (such as images, audio, and video). However,
we can build a deep neural network (DNN) that can learn complex probability
distributions. Yet, it is not so trivial to make a DNN represent such distributions.
Typically, a DNN is seen as a black box that, given a high-dimensional data point x,
computes a one-dimensional value fy(x). To make the function non-negative over
the entire domain, we can take the exponential e/¢*) and divide it by a normalizing
constant Zy, thus correctly defining a probability density function (pdf) pg(x), where
0 represents the weights of the model.

By definition, Zy := [ efo™®) dx, and even in the discrete case, the computation
of this constant term is #P-complete, which means that it is at least as hard as
NP-complete problems, and thus intractable.

To overcome this issue, [16] Song and Ermon 2020 introduced the usage of score
functions to build score-based models. Given a pdf pg(x), the score function (or
simply score) is defined as:

s9(x) 2 V. log pg(x) (2.2)

On the other hand, score functions are computationally feasible and theoretically
retain all the information of pp(x). In principle, one can compute the score function
from the pdf by taking the gradient and, conversely, reconstruct the pdf by integrating
the score function. The score function represents a vector field that indicates the
direction in which the pdf increases most rapidly.

But how does it avoid computing the normalizing constant Zy? Thanks to
the properties of logarithms, we can parametrize the score as the gradient of the
energy-based model fy.

efG(X)
SG(X) =V IOgPH(X) =V log
0
= V:ch@(x) - V:r IOg Z€ = Vﬂcf@(x) (2'3)
——

=0

"https://yang-song.net/blog/2021/score/
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From here, to build a score-based model, we shall I /2
estimate the score function of the underlying den-
sity function by training a score model such that it

T

i
\
\
\
\

AN N N Y

S RPP U

function (the contour); it is easy to compare by sub-
traction the two vector fields since they lie in the same
vector space, but since we don’t have access to the
true score, [17] Hyvérinen 2005 formulated an equiv-
alent estimation method called score-matching, is Figure 2.4. Score and pdf of a
formalized as follows: mixture of two Gaussians.?

P

= .

minimizes the difference between the model’s score § i f IEUAN “
. . P A B}

and the true score, figure 2.4 shows an illustration of : : t i ORI
Score function (the vector field) and respective density e
OO

=

\

T T N
Pl e s s e v N

P R S S U N N

~ o~ S LS

given {x1,X2,...,Xp|n > 0} ~ pgata(X); learn sp(x) = piata(X)

by minimizing the Fisher divergence
1

5 Epaua) [1Vx108 paata (%) = so(x) 3] (2.4)

equivalent to

Byt [ 5150013 + trace (Vxsox)|

~
~

Z [Hse x;)||3 + trace (sztg(xi))} (2.5)

1
n =1

where Vxsp(x) is the jacobian matrix of sp(x).

This "vanilla version" of score-matching becomes very computationally expensive
as the input size grows due to the presence of trace (Vxsg(x)). Evaluating the
trace of the Hessian matrix Hiogp,(X) = Vxsg(x) : x € RP requires D times more
backpropagation passes compared to computing just sg(x) [18] Song et al. 2019.
Thus, this method scales poorly with increasing input dimensions and network
complexity.

We introduce Denoising Score Matching by [19] Vincent 2011, where we can
estimate the score of corrupted data points:

n
o 32 lsal%) — Vxlogar (5 ) (2.6
where ¢, (%;) represents x; perturbed by some noise
and
{X1,X2,...,Xn} ~ Pdata(X) N1, X2, ..., Xn} ~ s (X) | X ~ qo(Xi | x;) Vi
If we choose a Gaussian smoothing kernel,

Go(X | x) = N(X | x,0%])

the loss further simplifies to
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)a 1 &
0;0 ? Z (2.7)
=1
We can apply Stochastic Gradient Descent (SGD) to minimize the above-defined loss
function. Since the objective is to model the score on natural data points, we want to
choose a very small 0. However, if o is too small, it causes the loss variance to explode.

0'2 2

Algorithm 1: Langevin Dynamics.

xp ~ m(x) ; // Initialize from any prior distribution
Choose € and T such that € — 0 and T' — oc;
fort<«+ 1,2,...,T do

Zy ~ N(O, I),

Xt < X1 + 5 Ve log p(xi-1) + ez

U W N =

To generate new samples from a trained score function sg(x) we can leverage
Langevin Dynamics by randomly sampling any data point in the relative vector
space and iteratively let it "flow" towards high-density locations of p(x) by following
the vector field given by the gradients represented in sg(x). To avoid convergence
to a single point, some level of Brownian motion is added at each step, making the
process stochastic. It can be imagined like a particle taking small steps, following
directions predicted by the score function, and at each step, it gets pushed by some
invisible random force until it reaches an area where it is highly probable that natural
images exist.

Algorithm 1 demonstrates an approach for sampling from p(x) using V, log p(x).
It guarantees that x” ~ p(x), and since sy(x) ~ V, log p(x), we can easily replace
V. log p(x) with our score model sg(x).

However, having chosen a small o, the trained score function is accurate only in
high-density regions. This results in inaccurate gradients in low-density regions, as
the model is trained to minimize the loss on samples with little perturbation. By
definition, these samples lie very close to the natural data points, so they belong to
high-density regions.

To address this issue, we can train a score model sy(x,0;) conditioned by
the variance of the chosen corruption kernel. By selecting multiple noise levels
o1 < 09 < ... < oy, the score model becomes accurate across the entire vector
space, from low data-density regions to high data-density regions. Figure 2.5 pro-
vides a high-level visualization of a jointly trained score function. We call it Noise
Conditional Score Network (NCSN), and to train the score model on multiple levels
of noise jointly (i.e. Vo € {o;}E, : sp(x,0) = Vxlogpy(x)).

We call this model the Noise Conditional Score Network (NCSN). To train the score
model on multiple levels of noise jointly (i.e., Vo € {o;}£; : se(x,0) ~ Vx log ps(x))

we can redefine the objective function loss as

Lb: o) 2 1 Zm o0 [ [V 1o P, (%) = so(x,0)[3]  (2.8)

3https://yang-song.net/blog/2021/score/
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Figure 2.5. First row shows data points from a mixture of two Gaussians perturbed with
three levels of Gaussian noise, and the second row visually shows the score model for
each level of noise. Image taken from blog 3.

where p,, (x) = N(X | x,021) is the probability density function of perturbed data
points at noise level o;, and A\(o;) is some positive weighting function.

[20] Song and Ermon 2020 empirically observed that it feels natural to choose
AMo) = 02, and it is highly recommended by the authors to choose {0}l as a

. or,—
geometric sequence such that 2L = ... = 2£=L > 1,
o) or

To generate new samples from a trained score function sg(x, o), [16] Song and
Ermon 2020 propose a method called Annealed Langevin Dynamics.

Algorithm 2: Annealed Langevin dynamics.

Require: {o;}F |, ¢, T

1 Initialize X ; // from any fixed prior distribution e.g. uniform

2 fori+ 1to L do
2

3 ; <—e-0—§ ; // «; is the step size
L

4 fort«+ 1,2,...,7T do

5 Draw z; ~ N (0, I);

6 Xy ¢ X1+ Fs0(Xe—1,00) + iz

T | X  XT;

8 return Xr;

Intuitively, for each level of noise ;, it samples from p,, (x) using naive Langevin
Dynamics, as defined in Algorithm 1, with progressively smaller step sizes «. In the
final iteration, it (hopefully) samples from py, (X) & pdata(x) when o, = 0.

Figure 1 is a visual example of the ability of Annealed Langevin Dynamics to
recover the original density distribution.
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Original data samples Naive Langevin dynamics samples Annealed Langevin dynamics samples

Figure 2.6. Simulation of sampling data points using Naive Langevin dynamics vs Annealed
Langevin dynamics.

2.3 Denoising Diffusion Probabilistic Models

|
N

L po(we—1 | zt)

Figure 2.7. Forward and Reverse Diffusion chain.

[7] Ho et al. 2020 first revealed an explicit connection between diffusion models
and score-based models. More specifically, NCSNs are a generalization of Diffusion
Probabilistic Models since the variational lower bound used for training diffusion
models is essentially equivalent to a weighted combination of score-matching loss
functions.

From [6] Sohl-Dickstein et al. 2015:

“The essential idea [...] is to systematically and slowly destroy structure
in a data distribution through an iterative forward diffusion process. We
then learn a reverse diffusion process that restores structure in data,
yielding a highly flexible and tractable generative model”.

In practice, we define a forward diffusion process starting from a natural image xg
and gradually add Gaussian noise to it over T' timesteps. Following this, during
the reverse diffusion process, a U-Net is trained to predict the noise added at each
timestep, effectively becoming a denoising model.

Formally, the forward diffusion process is formulated as a Markov Chain, where
each transition depends only and only on the previous state. More specifically, a
Markov diffusion kernel is applied at each timestep to gradually destroy the structure
of the data.

q(Xt | Xt—l) = N(Xt; V1= Bixi—1, 51:1) (2'9)

where 3; is the diffusion rate set by a fixed scheduler.
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Intuitively, xy is z;_1 with the addition of some Gaussian noise with variance f;.
Instead of sampling ¢ times during the forward process, we can use the reparametriza-
tion trick, N'(p1, 0) = p+o-€, where € ~ N(0, I), to fast-forward the process in one go.

Let oy =1 — B¢ and &y = H§:1 g
we can rewrite equation 2.9 as

q(xe|xt—1) = V1 = Bixe—1 + V/Bye
=vax;_ 1+ V1 — oqe (2.10)

and so we can directly sample x; from xg by

q(x¢ | x0) = Vauxo + 1 — e, where € ~ N(0,1)

= N (x¢; Vagxg, (1 — az)I) (2.11)

The reverse diffusion process involves sampling x;_; from x;, meaning that given
a noisy image, it predicts a less noisy version of it:

p(xe—1]xe) = N (x¢—15 po(x¢, t), Lo (x4, 1)) (2.12)

where 1y and Yy are neural networks that respectively predict the mean and the
variance of the time-dependent backward distribution conditioned on the previous
image Xx;.
In practice, we can decide to fix ¥y = 02 to avoid training a second (expensive)
network
p(xe-1]x4) = N (xp-15 (x4, 1), 0%) (2.13)

and train ug(x¢,t) on the following loss function.

L =B 7(0.7) x0~a(x0),e~N (0,0 [| 1€ — €0(xt, )| ] (2.14)

This elegant objective function is derived from a beautiful mathematical formula-
tion that sets a variational lower bound on the (intractable) negative log-likelihood of
the original image, — log(pg(xp)), using the reversed Kullback-Leibler Divergence. It
minimizes the distance between the real noise added during the forward diffusion and
the subtracted noise during the backward diffusion. Although it’s not strictly about
additions and subtractions, but it involves a weighted sum to maintain saturation
and brightness balance.

(a) Samples from linear (top) and cosine (bottom)
schedulers at linearly spaced timesteps from 0 to

T. Image taken from [21] Nichol and Dhariwal
2021. (b) Noise level at each timestep for
Linear and Cosine Schedulers.

Figure 2.8. Comparison of Schedulers.
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Algorithm 3: Classifier Guided Sampling.
Given : Classifier pg(y | x¢)
Input : class label y,
guidance strength s
1 X7 ~ N(O, I) )
2 for all t from T to 1 do
3 | e~N(0,I);
1—oy

4 o< \/% (Xt - mee(xtat)> + Sgtvxt 10gp¢(y | Xt) ;
5 X¢—1 < U+ Ot€

6 return xg

Algorithm 4: Classifier-Free Guided Sampling.

Input : class label y,

guidance strength s

1 X7 ~ N(O,I) )

2 for all t from T to 1 do

e~N(0,1) ;

4 €<+ (s+4 1)eg(xy, t,y) — seg(xy, t) ;

6 | Xt_1 ¢ L+ O

7

w

return x

Figure 2.9. Pseudo algorithms of Classifier Guidance Sampling and Classifier-Free Guidance
Sampling 4.

In a nutshell, we can easily write down formulas for the forward and backward
diffusion processes as follows:

x; = Vauxo + /(1 — ay)e (2.15)

1 1-— (677
= (x = o 2 e(xy t Vo 2.16
X¢_1 7a, (xt =4 eg(xt )) + soy + Qe ( )

Regarding the choice of a scheduler, [7] Ho et al. 2020 initially used a linear
scheduler. Later on, [8] Dhariwal and Nichol 2021 improved the model by switching
to a cosine scheduler, which has the purpose of destroying the information in the
image more slowly. Figure 2.8b compares the scheduler functions, and Figure
2.8a provides an example of how noise is gradually added using the two different
schedulers. Clearly, the cosine scheduler retains information in the image for longer
compared to the linear scheduler.

So far, we have been generating images from any class in the training set. How
can we achieve class-conditional sampling? It turns out that it is relatively intuitive.
A time-dependent classifier py(y|z;) can be trained, meaning it receives as input not
only a (noisy) image but also the timestep ¢ of the diffusion chain.

The gradients of py(y|x;) point in the direction that most increases the probability
of x; being classified as class y. Therefore, we can slightly modify the sampling

‘https://cvpr2022-tutorial-diffusion-models.github.io
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formula to deviate the generation towards class y.

1 ( 1—ay
B
Vo, "t VT =

where oy = /1 — oy, and s is the guidance strength. By tuning this value we trade
diversity for quality.

Xt-1 = Ee(Xtﬂf)) + 504V log py(y|xs) + o€ (2.17)

The new conditional sample distribution is defined as

Po(we|y) o< po(xi|y)ps(ylae)® (2.18)

Training a second classifier (a neural network) is expensive. To avoid this, we
observe by Bayes’ theorem

po(t|y)
Tp) X ———= 2.19
pe(y| t) p@(xt) ( )
It follows (zly)]° (wely)™+!
_ Po(xe|y po(xtly)®
T x T = 2.20
p9( t|y) p@( t|y) |: p@(xt) :| pe(fUt)s ( )
By taking the log space of both sides
log po(x¢|y) = (s + 1) log pe(at|ly) —slog  pe(xy) +C (2.21)
——— ——

conditional unconditional

By doing so, we achieve Classifier-free guidance by training the Denoising
U-Net both conditionally and unconditionally at the same time. This means that
we set a probability puncond to train €y(x,t,y) unconditionally at every iteration.

One of the most significant challenges associated with DDPMs is the considerable
inference time required. While the forward process can be directly applied without
delays from neural network usage, the reverse process is highly time-consuming, as
it necessitates performing T queries to the same neural network. This constraint
limits the common usage of the model since it requires substantial computing power
to generate images in a feasible time.

A solution to this issue was developed by reconsidering the inference process to
minimize the number of iterations required by the generative model. The key concept
of this solution lies in examining the objective function expressed in expansive form:

L (eg) := ZT: Vit mq(x0),ecmA(0,1) {Heét) (\/@TXO + /1 - dtet) - etHﬂ (2.22)
t=1

Here ¢y := eét) |f:1 represents a set of T' functions, each reliant on a set of trainable
parameters 6y, aiming to approximate the noise added at timestep t of the forward
process. Observing that these functions rely on the marginal g(z¢|zo) rather than
the joint q(x17._,,T | 2p), a novel mathematical model for the inference procedure
called Diffusion Denoising Implicit Models (DDIM) was proposed by [22] Song et al.
2022. This is a non-Markovian (and thus, deterministic) sampling procedure that
does not require to retrain the Diffusion Model.

We define a trainable generative process py(xo.r) where each pg(xi—1 | x¢) lever-
ages the knowledge of ¢, (x¢—1 | x4, 20). Intuitively, given a noisy observation z;, we
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Figure 2.10. Graphical model for accelerated generation, where 7 = [1, 3]. image taken
from [22] Song et al. 2022

first predict the corresponding xg, and then use it to obtain a samples z;_1 through
the reverse conditional distribution g, (z—1 | 2, Zo).

Thus, we can express x; as a linear combination of xg and a noise variable e:

7y = Vayxo + /1 — age, where e~ N(0,1) (2.23)

The model then tries to predict € from z;, without explicit knowledge of the
term xg. However, rewriting the previously defined function, the term xg can be
expressed as a function of z;, defined as the denoised observation approximation
function, which predicts zy given z;.

By defining this approximation, a unique form of the generation process is
provided:

NS (@), 021) ift=1

(®) . (2.24)
Qo(wi—1 | 24, fy '(x4)) otherwise

P (w1 | @) = {

The generic x;_1 sample can now be defined as:

(t)
/1=
Xt—1 = /-1 (Xt \/OTOtétee (Xt>> +yl—ar—of- fét) (x¢) + oe(n)er (2.25)

where ¢ ~ N(0,1), o :=1
and a¢(n) = nv/(1 — a—1)/(1 — ar)\/1 — awfay—1 YV t € {1,..., T} such that n € Rx

By providing this sampling generation definition, a general form for representing
the entire generation process is established, including DDPM’s. This can be achieved
by imposing 7 = 1. This adjustment renders the forward process Markovian once
again, reverting the generative process to DDPM.

Finally, to reduce the number of timesteps required during reverse diffusion
without retraining our model, we set a different sub-sequence of timesteps 7 from
[1,...,T]. By setting n = 0, the sampling becomes deterministic, resulting in "pure"
DDIM. By tuning 7, we can achieve different levels of stochasticity, corresponding to
the amount of Gaussian noise added at each timestep. Figure 2.10 provides a simple
visual example.

DDIM can perform fast sampling because it does not rely on small g; steps (i.e.,
the amount of noise removed at each step).
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Table 2.1. CIFARI10 and CelebA image generation measured in FID. n = 1.0 and & are

cases of

Table courtesy of [22] Song et al. 2022.

(although [7] Ho et al. 2020 only considered 7" = 1000 steps, and S < T
can be seen as simulating DDPMs trained with S steps), and n = 0.0 indicates DDIM.

CIFARIO (32 x 32) CelebA (64 x 64)
n/S 10 20 50 100 1000 | 10 20 50 100 1000
00 13.36 6.84 4.67 4.16 4.04 | 17.33 13.73 9.17 6.53 3.51
02 1404 711 477 425 409 | 17.66 1411 951 6.79 3.64
0.5 16.66 835 525 446 4.29 | 1986 16.06 11.01 809 4.28
1.0 41.07 1836 801 578 473 | 3312 26.03 18.48 13.93 5.98
5 36743 13337 3272 9.99 3.17 | 299.71 18383 71.71 4520 3.26

2.4 Adversarially trained Classifiers

Training Classifier Neural Network Fj, on Dataset X can be defined as

min B e ) [c (Fy(x), y)] (2.26)

where L is a loss function (e.g. cross-entropy loss).

Models trained as in Equation 2.26 are subject to adversarial attacks ([23] Madry
et al. 2019, [4] Szegedy et al. 2014), where adversarial examples are misclassified by
Fy4. Let’s define such data.

Given (x,y) € X, we say x* is an adversarial example if Fy(x*) # y and x* is
perceptually similar to x to a human observer. Therefore, Fy is an e-robust classifier
if for any (x,y) ~ D, where D is the underlying distribution of data,

y=Fy(x) = Fy(x+6) forany [0 <e (2.27)

To address this issue, [23] Madry et al. 2019 updated Equation 2.26, defining a
new training problem for Robust Classifiers

min B ) x (max £ (Fy(x +9),y) (2.28)
where S = {6 : [|d]|, < €} is dependent on a fixed L, norm.

In practice, Eq. 2.28 represents a Minmax optimization problem, learning
parameters ¢ such that the classifier performs well on both clean and adversarial
data up to a certain extent. By increasing the robustness radius ¢, the model slightly
sacrifices its accuracy on clean data in exchange for a substantial increase in accuracy
on perturbed data [24] Tsipras et al. 2019.

Minmax optimization problems are often difficult to solve or even intractable,
but [23] Madry et al. 2019 provides an effective approximation that makes it tractable.

Fast Gradient Sign Method (FGSM), defined by [25] Goodfellow et al. 2015,
is an algorithm for L.,-norm adversarial attacks and is described by the following
formula:

x" =x+€-sign (VxE(F¢(x), y)) (2.29)
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where sign is a function that returns the sign of the entries, encoding the direction
of the gradient. Note that the gradient is computed with respect to x. In this
equation, x represents the original input, y is the true label, € is the perturbation
magnitude, and £ is the loss function used to train the classifier Fy.

FGSM works by perturbing the input data in the direction of the gradient of the
loss function. This perturbation is scaled by €, which controls the strength of the
attack. The goal is to find the smallest possible perturbation that can change the
classifier’s prediction.

Projected Gradient Descent (PGD) can be seen as an iterative generalization
of the FGSM algorithm [23] Madry et al. 2019. It is used to generate adversarial
examples by iteratively perturbing the input. The iterative procedure is shown
below:

xi = clip, (x{_1 +a-sign (Vg LF(x 1)) ) (2:30)

Here, clip, denotes the function that projects its argument to the surface of x’s
e-ball, and « is the step size. This algorithm is able to produce strong adversarial
data that have a high probability of fooling a model; for this reason, it is usually
used as a benchmark for the robustness of neural networks.

PGD iteratively refines the adversarial example by applying small perturbations,
ensuring that each step remains within the e-ball around the original input. This
process continues until the perturbation successfully alters the classifier’s prediction
or reaches a predefined number of iterations. This method is known for generating
some of the most challenging adversarial examples, making it a crucial tool for
evaluating and enhancing the robustness of classifiers.

Both of these attacks can be targeted or untargeted. In targeted attacks, we
choose the class we want the model to classify the image as. In untargeted attacks,
the model will likely misclassify the image into the closest class in terms of the
distance between decision boundaries in high-dimensional space.

Recent studies have highlighted a significant connection between robustness to
Gaussian noise and adversarial robustness. The method of randomized smoothing,
as detailed in [26] Cohen et al. 2019, provides a framework for transforming any
classifier into one that is certifiably robust against adversarial perturbations through
the application of Gaussian noise. Their method is mathematically backed by
proven theorems. Specifically, Theorem 1 in their work states that for a randomized
smoothed classifier g, there exists a certified radius R within which the classifier’s
prediction is guaranteed to be stable,

R=5 (27 ) - o7 7m)) (2.31)
where o is the standard deviation of the Gaussian noise, ®~! denotes the inverse CDF
of the standard normal distribution, and p4 and pg are the lower and upper bound
probabilities assigned by the base (non-smoothed) classifier f to the top two classes
(confidence-wise), respectively. This suggests that robustness to Gaussian noise and
adversarial robustness are intrinsically linked, providing a promising direction for
deep learning models that leverage this strong connection.
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2.5 Classifiers as Generative Energy Based Models

In general, image classification problems involving K classes are handled by
training a model Fy(x) : RIXWXC _ RE giving in output a vector of size k. This
vector is often passed through the Softmax function in order to have a proper
probability distribution. This process can be formalized as

exp(Fy(x)[y])
Poly | %) = <
> k=1 exp(Fy(x)[k])
[27] Grathwohl et al. 2020 showed that a generative energy-based model is hidden
inside a standard classifier, meaning that we can re-interpret the logits of Fj to
compute py(x,y) and py(x).

(2.32)

We know that for any generative model,

polx) = 3 pol, ) = 2 eXpZ((ZZS)(X) ), (2.33)

By marginalizing any y € K,

exp(Fy(x)[y]) (2.34)

pe\X,Y) =
By definition of conditional probability,

_pe(xy) _ exp(Fu(0)l)Z(0)
po(x)  Xpexp(Fu(x)[y])Z(9)
the intractable normalizing constants cancel out;

and finally, by going into log space we define the classifier score as a combination of
energy models

po(y | x) (2.35)

log pg(y | x) = log py(x,y) — log pe(x) (2.36)
— Fy(x)[y] — LogSumBxp, (Fs(x)y]) (2.37)
= By(x) — Bylx,9) (2.38)

where
Ey(x) = —logpe(x)
E¢(X7 y) = - 10gp¢(X, y)

Thus, [27] Grathwohl et al. 2020 have found a generative model hidden within
every standard discriminative model!
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Chapter 3

Related work

3.1 Robustness is at odds with Generation

Target Class

Original

Caldron

Figure 3.1. adversarial examples from smoothed DNNs at different smoothing scales o.
image taken from [28] Kaur et al. 2019

In recent years, a strong connection between Adversarially Trained (AT) models
and generative modeling has been discovered. The findings of [28] Kaur et al. 2019
strongly support the hypothesis that Perceptually Aligned Gradients (PAG) are a
general property of robust classifiers. Specifically, given any natural image, if we
iteratively take gradient steps that maximize the score of any fixed targeted class y
of a robust classifier, the result is perceptually aligned with human perception. In
contrast, performing the same experiment with a vanilla-trained classifier (o = 0)
does not yield perceptually aligned results.

This property highlights the ability of robust classifiers to capture and reflect
significant generative features in their gradient space, thereby bridging the gap
between adversarial robustness and generative capabilities.

3.2 Image Synthesis with a Single Robust Classifier

[29] Santurkar et al. 2019 have shown that the features learned by a single,
off-the-shelf, adversarially trained classifier are sufficient for a wide range of image
synthesis tasks, such as those shown in Figure 3.2.

These results alone prove that robust classifiers have incredible generative capabilities,
and their findings indicate that adversarial robustness may have benefits beyond
security and reliability. We believe they have paved the way for developing better
generative models thanks to the properties of robust DNNs.
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Generation Super-resolution
= ™ = H

Figure 3.2. Image synthesis and manipulation tasks performed using a single (robustly
trained) classifier. image taken from [29] Santurkar et al. 2019

3.3 Robust Classifier Guidance

Class conditional diffusion synthesis can be achieved in a classifier-free manner
by conditioning a Denoising Diffusion Probabilistic Model (DDPM) on the class,
effectively training a denoising model €y(x,t,y). Another approach is to explicitly
train a tailored time-dependent classifier py(y | x¢,t) to incorporate its gradients in
the reverse diffusion process, thereby "encouraging" the image to be classified as a
fixed y. This constraints the final output to be sampled from the class-conditional
input space distribution. This process can be summarized by Equation 2.17.

[12] Kawar et al. 2023 has developed a method to train a novel AT classifier
through PGD attacks to perform robust-classifier guidance since, as the paper states:

"...an off-the-shelf adversarially trained robust classifier would not fit
our purpose in this context. This is due to the fact that in the diffusion
process, the classifier operates on intermediate images x¢, which are a
linear mizture of an ideal image and Gaussian noise. Furthermore, this
mixture is also a function of t, which requires the classifier model to be
time-dependent."

This thesis is based on the belief that this statement might not be completely true,
and on the belief that an off-the-shelf AT robust classifier can be used for successfully
performing guidance in Diffusion Models.
The guidance is performed by using the gradients of a model

he(x¢,t) = {logpe(j | x¢,t) }]C:p where py is trained as follows: pick a noisy image
x4, and perform a PGD adversarial attack on it by applying early stopping, halting
the attack as soon as the classifier misses. This approach allows their model to be
robust against both Gaussian noise (already achieved) and adversarial noise (novel).
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Chapter 4

Experiments and Results

4.1 Introduction to the Main Idea

The main idea behind our research lies in strong hypotheses from the exist-
ing literature about the connection between adversarially trained robust classi-
fiers, generative models, and energy-based models. Current methods of Classifier-
free Guidance leverage Bayes’ theorem (Equation 4.1) to rewrite the conditional
probability distribution of the input space as a combination of generative scores,
all coming from the generative model described by 6. By doing so, we can train
a conditional DM pg(x | y) without needing to train a separate time-dependent
classifier.

Let pp(x) be an unconditional DM, and py(y | x) a classifier trained on the same
dataset as pyg

Vi logpe(x | y) = Vi logpy(x) + sV, log,(y | x)
= Vi logpg(x) + 5[V log po(x,y) — Va log(py(x))]

= (1 = s)Vz log py(x) + sV log py(x, y) (4.1)

We believe that conditional sampling can be achieved by combining an un-
conditional Diffusion Model, specifically DDPM or DDIM, with an off-the-shelf
robust classifier. Current literature strongly suggests that robust classifiers possess
generative properties, and their gradients are highly informative about the input
space. Therefore, these gradients can effectively guide the diffusion model towards
the desired class. We can write a similar equation to 4.1 by considering the classifier:

Vzlogpe(x | y) = Vi logpe(x) + sV log ps(y | x)
= V. logps(x) + 5[V log pg(x,y) — Vi log pe(x)]

= Vi logpg(x) — sV log py(x) + sV log py(x, y) (4.2)

Furthermore, we observe that we can turn the classifier score into Energy-Based
Models (EBMs) as described in Section 2.5.

= vxp@(x) + S[VIE¢(X) - VIE(p(X, y)] (43)
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Algorithm 5 shows the steps to follow in order to unconditionally sample images
by having a trained diffusion denoiser €. Algorithm 6 instead shows the classifier
guidance version of it by considering the classifier score V; log ps(y | x;). We will
make use of these implementations for our experiments.

Algorithm 5: 100 timesteps DDIM Sampling
Input : Brownian motion 7

T = [1p =0, 10, 20, 30, ..., 1000 = 7¢ = T ;
X7 ~ ./\/(0, I) )

for all s from S to 1 do

t 4 Tg;

t < T 1;

e ~N(0,1);

€+ ep(xy,t);

Ro % Vét_ate : // Estimate Xg
9 w4 apRo + /1 — apé;

10 Xy  p+oe(n)e ;

N O gk N =

0]

11 return X

Algorithm 6: 100 timesteps Classifier Guided DDIM Sampling

Given : Classifier pg(y | x;)
Input : class label y, guidance strength s, Brownian motion scale n

1 7= [rp = 0,10, 20,30, ..., 1000 = 7, = T ;

2 X7 NN(O,I) ;

3 for all s from S to 1 do

4 t < Ts;

5 t < 15 1;

6 | ¢~N(0,I);

7 €< eg(x¢,t) — /1 — sV, logpe(y | x¢) ; // gradient step
8 )20 < 7&57\/\/0%77&& )

9 W vapXe + /1 — apé;

10 | Xy < p+o(n)e;

11 return X

Figure 4.1. Guided and Unguided version of the implementation of DDIM-sampling
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4.2 Model Selection and Evaluation

We have decided to use the diffusers! library available on HuggingFace. Specifi-
cally, we utilize their pre-trained models of DDPM and DDIM, as well as a PyTorch
implementation? of [7] Ho et al. 2020 by Google. For the pre-trained robust classi-
fiers, we chose to use the robustness® package by [30] Engstrom et al. 2019. The
classifiers are trained with Standard Adversarial Training (SAT) PGD on ¢ norm
with e-constraint = [0/255, 0.25/255, 0.5/255, 1.0/255] where € = 0/255 trains a
non-robust classifier. From now on, we will omit the denominator by just writing
e = [0, 0.25, 0.5, 1.0]. All experiments are made on a single NVIDIA GTX 1060
with 6GB of VRAM.

We re-evaluated the classifiers to make sure they perform as expected; table 4.1
shows the test-accuracies on 20-steps PGD-attacks with step size = 2.5 x =st

e-test \e-train | 0.0 0.25 0.5 1.0
0.0 95.25% 92.77% 90.83%  81.62%
0.25 8.65%  81.21% 82.40% 75.53%
0.5 0.28%  62.29% 70.17% 68.63%
1.0 0.00%  21.18% 40.48% 52.72%
2.0 0.00% 0.53% 5.22% 18.59%

Table 4.1. CIFAR10 L2-norm (ResNet50) 20-steps pgd

Our approach to conditional sampling is highly inspired by [8] Dhariwal and
Nichol 2021’s official codebase?, and we directly adopt their diffusion models’ metrics
evaluation procedure.

Figure 4.2. Unconditionally generated images from DDPM (left) and DDIM (right)
sampling methods

We work with the CIFAR-10° dataset, a well-known benchmark in the machine

https://huggingface.co/docs/diffusers
*https://huggingface.co/google/ddpm-cifar10-32
*https://github.com/MadryLab/robustness
‘https://github.com/openai/guided-diffusion
Shttps://www.cs.toronto.edu/~kriz/cifar.html


https://huggingface.co/docs/diffusers
https://huggingface.co/google/ddpm-cifar10-32
https://github.com/MadryLab/robustness
https://github.com/openai/guided-diffusion
https://www.cs.toronto.edu/~kriz/cifar.html
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learning community. It was chosen due to its manageable size and the availability of
extensive benchmarking results.

After having checked the classifiers’ performance, we evaluate the pre-trained
Diffusion model’s metrics, thus setting the baseline for conditional generation. Here
is a brief high-level description of the metrics involved:

o Inception Score (IS) measures the quality and diversity of generated images.
Higher is better.

o Fréchet Inception Distance (FID) evaluates the distribution divergence
between the generated images and real ones. Lower is better.

e Precision assesses the fraction of "realistic" generated images.

¢ Recall measures the diversity of generated images by evaluating how many
real images are covered by the generated ones.

IS1T FID ] Precision? Recall 1
DDPM 8.68 16.49 0.68 0.59
DDIM  8.40 14.79 0.64 0.59

Table 4.2. Evaluation metrics for unconditional guidance using DDPM and DDIM on
CIFAR-10 test set, with 1000 and 100 inference steps respectively

The evaluation is performed on 10,000 images sampled from each method against
10,000 different images from the CIFAR-10 test set.

Throughout the research, we have mostly used DDIM sampling since the pre-
trained model we downloaded was just as good as the DDPM version, but the
inference speed was approximately 20x faster.

4.3 Gradient Accumulation

Vi, ,10gpy(y | 1, )
VItl logp¢(y | xtl) e ’

@ P \)Ql log ps(y | t,_,)
—»©

Vi, logps(y | z4)

@)

> Va, logps(y | z1,)

=0

Figure 4.3. High-level illustration of the gradient cumulation process.

In the beginning, we suspected that in low-density regions (i.e., when the image
is close to being pure noise), the classifier score isn’t accurate, and thus, it is not
contributing well to the model, as the model’s accuracy on such data is close to
random guessing. So we have decided to "activate" the guidance procedure only
after a certain amount of timesteps (e.g. 30%) by first letting the unconditional
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DM denoise the image and making the data point flow to a higher density region.
Together with this, we have cumulated the gradient, meaning that at each timestep
t, instead of using Vg, logpy(y | z¢), we iteratively sum n times the gradients of
intermediate images to (hopefully) generate images from the wanted class. Figure 4.3
shows a high-level illustration of the process. In essence, line 7 in Algo 6 becomes:

n—1
€ ep(xp,t) —V1—ays Z Va,, log py(y | x¢,)
i=0
where z;, = x¢

By employing the above-mentioned approach, we achieved highly saturated
images that, while not entirely natural-looking, were clearly guided towards the
desired class. Figure 4.4 illustrates samples guided towards the "car" class, with the
guidance activating after 20% of the steps.

Figure 4.4. "cars" sampled by using 3 different classifiers, from less robust (left) to most
robust (right) with guidance scale s = 10 and n = 1. Guidance activation after 20% of
steps

4.4 Trade-offs Between Robustness and Natural Accuracy

v(1-a)= 0,010 0,204 0,381 0,539 0,672 0,778 0,999

Figure 4.5. Accuracy of AT classifiers at multiple levels of noise. The x-axis shows examples
of how the images appear at each respective timestep. The plot is cut at timestep 500
since the accuracies drop to 10% (i.e. random guessing). The evaluation was performed
on the CIFAR-10 test set at intervals of 10 steps.

Before continuing with the experiments, we aimed to analyze the accuracy
of the classifiers on images at various noise levels. To accomplish this, we con-
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ducted an accuracy evaluation on the entire CIFAR-10 test set at timesteps t =
[0, 10, 20, 30, ..., 1000] for the non-robust model (¢ = 0) and for the robust models
(e =10.25,0.5,1.0]). Figure 4.5 shows the accuracy of AT classifiers at multiple
levels of noise. Notice that after approximately 150 timesteps in the forward process,
the average accuracies of all models drop to the baseline value. For the CIFAR-10
dataset, that is equal to 10%, which is the random guessing accuracy rate. The
latter is expected as the images become too noisy to be recognizable. An exception
to this pattern is the most robust model (¢ = 1.0), which can still retrieve some
information about the ground truth class from images that appear as complete noise
to humans. The most explicit pattern of the plot is that the robustness of the model
is correlated with its natural data accuracy, confirming once again the findings of
[24] Tsipras et al. 2019

va= 10 095 081 063 04 028 016 008 004 002 001

Figure 4.6. Accuracy of AT classifiers at different darkness levels, scheduled by /&y, which
represents the weight given to the natural image at timestep ¢ in Eq. 2.23. The x-axis
shows examples of how the images appear at each respective timestep. The evaluation
was performed on the CIFAR-10 test set at intervals of 100 steps.

While conducting various experiments, we came up with an unexpected finding;
we evaluated the classifier accuracy on CIFAR-10 test images by applying the
"darkness" signal applied to z¢ in the forward diffusion process to z;, that is \/ay.
The radius € of the robustness of the models is inversely proportional to the mean
accuracy at each timestep. This is very strange since you would normally think that
the more robust models perform better in very dark images, but we found that it is
completely the opposite: less robust models are more robust to darkness.
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4.5 Tuning the Guidance strength

Airplane

Figure 4.7. Class Conditional sampling by using € = 1.0 classifier , n = 0.5, s = 30 for
first 50% of timesteps, s = 11 for last 50% of timesteps

We empirically find that our previous hypothesis about guidance is most likely
incorrect, indicating that it is essential to provide strong guidance when the data
point is in low-density regions of the input space. So, we have dropped the idea of
turning off the guidance at the beginning of the sampling process, and we have tried
to start with a relatively high value for the gradient strength scalar s and drop it to
a much lower value after a certain timestep. Furthermore, we stop using the gradient
accumulation method since we found that the results are highly correlated with
images sampled by only adjusting the guidance strength s. Figure 4.7 shows some
examples of class conditional sampling using the above-mentioned approach. We can
clearly see some improvements since the images appear to have fewer hallucinations
and more natural-looking images. When the model fails to generate samples from
the desired label, it usually produces images resembling some other class instead of
nonsense. A common drawback that we find when using a strong guidance scale is
getting highly saturated images and thus not conforming to reality.

If the guidance strength is too strong, the
classifier score will drive the noise towards the
class mode, overfitting the classifier’s knowledge
of the input space. Figure 4.8 shows a 100-
step DDIM generation process of a truck, start-
ing from top left (z7) to bottom right (z¢). It
is clear that only after ~10 timesteps the high
frequencies of a truck start to appear. It sug-
gests that hyperparameter tuning is essential for
successful conditional sampling. If the scale is
too small, it fails to guide towards the intended
class, thus generating unconditionally. If the guid-
ance strength is too large, it overfits the class
mode.

Figure 4.8. high guidance
scale, 100-step DDIM con-
ditional generation process
of a truck.
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TR

v(1-a)= 0,010 0,079 0,142 0,204 0,265 0,324 0,381 0,436 0,489 0,539 0,586 0,631 0,672 0,711 0,746 0,778

Figure 4.9. average E(x,y) and E(x) at multiple levels of noise. The plot is cut at timestep
300 since they converge. The evaluation was performed on the CIFAR-10 test set at
intervals of 10 steps.

In Section 2.5, Equation 2.38, we learned that given a data point x, we can
write Vi log ps(y | x) = Vo Eg(x,y) — Vi Eys(x). We have empirically found that by
dropping Fy4(x) and guiding only with Ey(x,y), the quality of samples improves.
Intuitively, we can interpret Ey(x,y) as the direction pointing towards the class-
conditional density, while E4(x) acts as an in-distribution measure, since in general,
it is inversely proportional to py(x) for any given x. Since we are generating mainly
from a trained Diffusion Model, we believe that this value is interfering with the

DM representation of the input space encoded in the parameters of the Denoising
UNet eg(x¢, 1)



4.7 From Large Leaps to Incremental Steps 29

4.7 From Large Leaps to Incremental Steps

Figure 4.10. Plots three different schedulers: the standard (1 — ay)%% (left), (1 — ay)?
(center), and (1 — ;)8 (right). Each plot should be read from right to left as it illustrates
the strength of guidance during the reverse diffusion process.

In section 4.5, we tried to reduce the guidance scale factor abruptly. In this
section, instead, we begin to smoothly control the guidance scale by distinguishing
the classifier score scheduler from the denoising scheduler.

The main idea is to modify the gradient strength scheduler so that the guidance
is strong at the beginning and gradually decreases towards the end. Normally, the
scheduler would be /1 — ;. To achieve the desired effect, we can raise (1 — @;) to
a different power, making the schedule resemble a sigmoid curve. The higher the
exponent, the more pronounced the effect. Figure 4.10 shows an example of how the
scheduler changes as we change the power coefficient.

To provide a flexible experiment setting, we introduce a new sigmoid-based
scheduling function (4.4). This function allows us to easily modify the shape of the
sigmoid curve by adjusting three key parameters: yg, tg, and k. The parameter yg
determines the horizontal asymptote, effectively setting the starting value of the
scheduler. The parameter tg specifies the midpoint of the sigmoid, allowing us to shift
the curve along timesteps. Lastly, k& controls the steepness of the curve, allowing us to
set how quickly the guidance changes from strong to weak. By tuning these parame-
ters, we can easily explore the impact of different schedulers on the classifier guidance.

1
ft) =1 —yo)- 11 o—kli—to) + %o (4.4)
The experiments led to surprisingly good-looking images; in particular, we can
notice less saturation, so the images look more natural. Figure 4.11 shows an example
by using a custom scheduler.

Airplane Car Bird Cat Deer

Figure 4.11. Guidance scheduler with parameters to = 650, yo = 0.1, k = 0.01 (left) and
images sampled with the same scheduler guided by using € = 1.0 classifier, n = 1, s = 12
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Class-wise E(x) Statistics on training set eps 0 Class-wise E(x) Statistics on training set eps 0.25
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Figure 4.12. Average classifiers’ E(x) statistics divided by class

In this section, we present a new objective function that brings back E4(x). Figure
4.12 presents the class-wise statistics of Ey(x) from all our classifiers evaluated on the
CIFAR-10 training set. It is evident that the models trained on larger e-radius have
greater average energy compared to lower e-radius models. Notice also that both
intra-class and inter-class variations follow the same reasoning. This behaviour is
expected, as robust models tend to lose the correct perception of natural data while
gaining awareness of adversarial data. A similar behaviour is found by analyzing
E4(x,y) of the training set.

Throughout the experiments, we observed that the average Ey(x) of the generated
images was significantly lower compared to the energy of the natural images from
the CIFAR-10 training set. Intuitively, this could mean that the classifier believes
that the generated images are more likely to belong to the training set than the
training set images themselves.

To address this issue, we define the energy divergence:

ABy(x) = [Eg(x")[y] — Ey(x)| (4.5)

where E4(x*)[y] is the fixed, class-wise average energy of the classifier described by
¢, computed on the training set images having label y (i.e. the blue dots in Figure
4.12). So, the new objective function is defined as:

L:=Eyg(x,y) + MAE4(x) (4.6)

where A is a weighting constant.
By replacing the classifier’s score with V,, L, we are able to conditionally sample
images having a lower AFE4(x) on average.
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Airplane

Figure 4.13. Guidance scheduler with parameters ¢, = 500, yo = 0.05, k& = 0.02 (left)
and images sampled with the same scheduler guided by using € = 1.0 classifier, n = 0.8,
s =4. Ey(x,y) score

Airplane Car Bird Cat Deer

Figure 4.14. Guidance scheduler with parameters ¢, = 500, yo = 0.05, k£ = 0.02 (left)
and images sampled with the same scheduler guided by using € = 1.0 classifier, n = 0.8,
s =4. L score, A =0.15

The comparison between Figure 4.13 and Figure 4.14 shows the saturation
difference between the images sampled with the two different methods. Even if the
qualitative perception is very similar, the energy computed on the generated images
by guiding with the objective function 4.6 is clearly lower. Figure 4.15 illustrates the
comparison between the average energy computed on the above-mentioned images.
The red area is an average energy indicator across all classes.

Average Ex for Each Class Average Ex for Each Class

P & & & & & e @ & B & @\&\@«' & « & ¢ s « & e

ssssssssss

Figure 4.15. Comparison plot between Ey(x*) (blue line) and Ey(x) (red line) of samples
in Fig. 4.13 (left) and Fig. 4.14 (right)
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Figure 4.16. High-level illustration of PGD-based guidance process.

In this Section, we present a novel method to approach classifier guidance. During
each iteration of the reverse denoising diffusion process, we perform a variation of
an-steps PGD attack on the image x;, maximizing the joint energy F(x,y) where y
is a fixed guidance label.

At each step i € {1,...,n — 1}, the intermediate gradient is first normalized to
have lo-norm equal to 1. Then we multiply it by a fixed step size v and subtract
it from x4, to get x4, ,. The idea is to use the classifier score on the image x;, as
guidance for x; since it should be better informed about the direction towards the
class distribution. Figure 4.16 shows a high-level visual example of the approach;
keep in mind that thinking about high-dimensional spaces is tough for our brains
because we're so used to thinking in three dimensions. Our intuition, which works
well in our 3D world, often lets us down when we try to understand more complex,
higher-dimensional concepts. Nevertheless, the illustrations help us explain what we
are thinking about.

This procedure can be formalized by applying Algorithm 8 at each step in the
reverse diffusion process.

Algorithm 8: PGD-based guidance score

Given: Classifier pg(y | x), step size v, # of attack steps n, timestep ¢

1 for i< 0ton—1do
Vx E¢(xf1ay)
2 L Xy < (L47)xy; — ’)’m

3 Score = Vy, log Ey(xt,,y); // replaces Vg, logpg(y | %) in algo 6

Airplane

Figure 4.17. Linear guidance scheduler (left) and images sampled with the same scheduler
guided by means of 100 steps PGD-based guidance, with v = 0.01. Samples are not
generated by using common parameters
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Figure 4.17 shows some images sampled with this method. Although it doesn’t
always generate from the desired class, overall, the colours look more natural, and
the images are more diverse between them.

We believe that exploring further PGD-based guidance could lead to interesting
results. By refining this approach, we anticipate achieving more accurate class
conditioning and generating images with greater fidelity and diversity.
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Chapter 5

Conclusions

5.1 Summary of Findings

In this thesis, we have explored how to use an off-the-shelf adversarially trained
classifier to achieve conditional sampling in unconditional diffusion models. Our
research has demonstrated that classifier guidance is indeed possible by using a
SAT classifier, showcasing the power of robust models in generative tasks. We have
started the research by searching some pre-trained Diffusion Models and diverse AT
classifiers.

We have reproduced the DM’s intended behaviour and we tested its evaluation
metrics as well as the qualitative perception of the unconditionally generated images.
Thus, we have settled the baseline to compare our class-conditioned samples.

After that, we analyzed the discriminative models’ behaviour against Gaussian
noise, typically found in DDPMs and DDIMs, while also highlighting their unex-
pected vulnerability to darkness. This allowed us to think about new methods to use
best their generative features to successfully drive samples towards the desired class.
Furthermore, we have turned discriminative models into generative Energy-Based
Models (EBMs). We used the energy functions to improve the guidance process
thanks to empirical experiments. We have interpreted the meaning of E4(x) and
E4(x,y) in a generative setting, giving us some intuitions about the hidden genera-
tive properties of a classifier.

A significant contribution of this work is the statistical analysis of classifier metrics
against the entire CIFAR-10 test set across a simulated forward diffusion process,
treating classifier logits as probabilities as well as energy functions. This analysis
provided a deeper understanding of the connection between accuracy and energy
and how they change over the course of a diffusion process. The behaviour of the
accuracy was intuitively predicted, but the E(x) function had some unexpected
outcomes.

We introduced a novel sigmoid-based function to study the contribution of
guidance strength across all timesteps, and we have tried different methods to
improve the generation quality while maintaining class conditioning.

5.2 Limitations

Our research was constrained by a few limitations. The limited GPU and
computing power available restricted our ability to retrain diffusion models. Thus,
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we have worked with a pre-trained diffusion model that was far from state-of-the-art
evaluation metrics.

5.3 Future Research

Looking ahead, we plan to expand our research across different datasets such
as CelebA and ImageNet. Moreover, we plan to investigate the gradients of robust
classifiers and how to enhance their contribution towards diffusion models in order
to achieve good metrics in classifier-guided samples.

To provide theoretical insights, we shall mathematically study the connection
between the adversarial robustness of a classifier and its accuracy on predicted score
functions in low-density regions of the input space.

We believe that these efforts will refine our approach and improve the over-
all quality and effectiveness of classifier guidance by using an off-the-shelf robust
classifier.
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